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Preface

This book was expanded from lecture materials I use in a one semester upper-division under-

graduate course entitled Probability and Statistics at Youngstown State University. Those lec-

ture materials, in turn, were based on notes that I transcribed as a graduate student at Bowling

Green State University. The course for which the materials were written is 50-50 Probabil-

ity and Statistics, and the attendees include mathematics, engineering, and computer science

majors (among others). The catalog prerequisites for the course are a full year of calculus.

The book can be subdivided into three basic parts. The first part includes the introductions

and elementary descriptive statistics; I want the students to be knee-deep in data right out of

the gate. The second part is the study of probability, which begins at the basics of sets and

the equally likely model, journeys past discrete/continuous random variables, and continues

through to multivariate distributions. The chapter on sampling distributions paves the way to

the third part, which is inferential statistics. This last part includes point and interval estimation,

hypothesis testing, and finishes with introductions to selected topics in applied statistics.

I usually only have time in one semester to cover a small subset of this book. I cover the

material in Chapter 2 in a class period that is supplemented by a take-home assignment for

the students. I spend a lot of time on Data Description, Probability, Discrete, and Continuous

Distributions. I mention selected facts from Multivariate Distributions in passing, and discuss

the meaty parts of Sampling Distributions before moving right along to Estimation (which is

another chapter I dwell on considerably). Hypothesis Testing goes faster after all of the previous

work, and by that time the end of the semester is in sight. I normally choose one or two final

chapters (sometimes three) from the remaining to survey, and regret at the end that I did not

have the chance to cover more.

In an attempt to be correct I have included material in this book which I would normally not

mention during the course of a standard lecture. For instance, I normally do not highlight the

intricacies of measure theory or integrability conditions when speaking to the class. Moreover, I

often stray from the matrix approach to multiple linear regression because many of my students

have not yet been formally trained in linear algebra. That being said, it is important to me for

the students to hold something in their hands which acknowledges the world of mathematics

and statistics beyond the classroom, and which may be useful to them for many semesters to

come. It also mirrors my own experience as a student.

The vision for this document is a more or less self contained, essentially complete, correct,

introductory textbook. There should be plenty of exercises for the student, with full solutions

for some, and no solutions for others (so that the instructor may assign them for grading).

By Sweave’s dynamic nature it is possible to write randomly generated exercises and I had

planned to implement this idea already throughout the book. Alas, there are only 24 hours in a

day. Look for more in future editions.

Seasoned readers will be able to detect my origins: Probability and Statistical Inference

by Hogg and Tanis [44], Statistical Inference by Casella and Berger [13], and Theory of Point

Estimation/Testing Statistical Hypotheses by Lehmann [59, 58]. I highly recommend each of

vii
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those books to every reader of this one. Some R books with “introductory” in the title that I

recommend are Introductory Statistics with R by Dalgaard [19] and Using R for Introductory

Statistics by Verzani [87]. Surely there are many, many other good introductory books about

R, but frankly, I have tried to steer clear of them for the past year or so to avoid any undue

influence on my own writing.

I would like to make special mention of two other books: Introduction to Statistical Thought

by Michael Lavine [56] and Introduction to Probability by Grinstead and Snell [37]. Both of

these books are free and are what ultimately convinced me to release IPSUR under a free license,

too.

Please bear in mind that the title of this book is “Introduction to Probability and Statistics

Using R”, and not “Introduction to R Using Probability and Statistics”, nor even “Introduction

to Probability and Statistics and R Using Words”. The people at the party are Probability

and Statistics; the handshake is R. There are several important topics about R which some

individuals will feel are underdeveloped, glossed over, or wantonly omitted. Some will feel the

same way about the probabilistic and/or statistical content. Still others will just want to learn R

and skip all of the mathematics.

Despite any misgivings: here it is, warts and all. I humbly invite said individuals to take

this book, with the GNU Free Documentation License (GNU-FDL) in hand, and make it better.

In that spirit there are at least a few ways in my view in which this book could be improved.

Better data. The data analyzed in this book are almost entirely from the datasets package

in base R, and here is why:

1. I made a conscious effort to minimize dependence on contributed packages,

2. The data are instantly available, already in the correct format, so we need not take

time to manage them, and

3. The data are real.

I made no attempt to choose data sets that would be interesting to the students; rather,

data were chosen for their potential to convey a statistical point. Many of the data sets

are decades old or more (for instance, the data used to introduce simple linear regression

are the speeds and stopping distances of cars in the 1920’s).

In a perfect world with infinite time I would research and contribute recent, real data in a

context crafted to engage the students in every example. One day I hope to stumble over

said time. In the meantime, I will add new data sets incrementally as time permits.

More proofs. I would like to include more proofs for the sake of completeness (I understand

that some people would not consider more proofs to be improvement). Many proofs

have been skipped entirely, and I am not aware of any rhyme or reason to the current

omissions. I will add more when I get a chance.

More and better graphics: I have not used the ggplot2 package [90] because I do not know

how to use it yet. It is on my to-do list.

More and better exercises: There are only a few exercises in the first edition simply because

I have not had time to write more. I have toyed with the exams package [38] and I believe

that it is a right way to move forward. As I learn more about what the package can do I

would like to incorporate it into later editions of this book.
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About This Document

IPSUR contains many interrelated parts: theDocument, the Program, the Package, and the An-

cillaries. In short, the Document is what you are reading right now. The Program provides an

efficient means to modify the Document. The Package is an R package that houses the Program

and the Document. Finally, the Ancillaries are extra materials that reside in the Package and

were produced by the Program to supplement use of the Document. We briefly describe each

of them in turn.

The Document

The Document is that which you are reading right now – IPSUR’s raison d’être. There are

transparent copies (nonproprietary text files) and opaque copies (everything else). See the

GNU-FDL in Appendix B for more precise language and details.

IPSUR.tex is a transparent copy of the Document to be typeset with a LATEX distribution such

as MikTEX or TEX Live. Any reader is free to modify the Document and release the

modified version in accordance with the provisions of the GNU-FDL. Note that this file

cannot be used to generate a randomized copy of the Document. Indeed, in its released

form it is only capable of typesetting the exact version of IPSUR which you are currently

reading. Furthermore, the .tex file is unable to generate any of the ancillary materials.

IPSUR-xxx.eps, IPSUR-xxx.pdf are the image files for every graph in the Document. These

are needed when typesetting with LATEX.

IPSUR.pdf is an opaque copy of the Document. This is the file that instructors would likely

want to distribute to students.

IPSUR.dvi is another opaque copy of the Document in a different file format.

The Program

The Program includes IPSUR.lyx and its nephew IPSUR.Rnw; the purpose of each is to give

individuals a way to quickly customize the Document for their particular purpose(s).

IPSUR.lyx is the source LYX file for the Program, released under the GNU General Public

License (GNU GPL) Version 3. This file is opened, modified, and compiled with LYX, a

sophisticated open-source document processor, and may be used (together with Sweave)

to generate a randomized, modified copy of the Document with brand new data sets for

some of the exercises and the solution manuals (in the Second Edition). Additionally,

LYX can easily activate/deactivate entire blocks of the document, e.g. the proofs of the

theorems, the student solutions to the exercises, or the instructor answers to the prob-

lems, so that the new author may choose which sections (s)he would like to include in the

final Document (again, Second Edition). The IPSUR.lyx file is all that a person needs

(in addition to a properly configured system – see Appendix G) to generate/compile/ex-

port to all of the other formats described above and below, which includes the ancillary

materials IPSUR.Rdata and IPSUR.R.

IPSUR.Rnw is another form of the source code for the Program, also released under the GNU

GPL Version 3. It was produced by exporting IPSUR.lyx into R/Sweave format (.Rnw).
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This file may be processed with Sweave to generate a randomized copy of IPSUR.tex – a

transparent copy of the Document – together with the ancillary materials IPSUR.Rdata

and IPSUR.R. Please note, however, that IPSUR.Rnw is just a simple text file which

does not support many of the extra features that LYX offers such as WYSIWYM editing,

instantly (de)activating branches of the manuscript, and more.

The Package

There is a contributed package on CRAN, called IPSUR. The package affords many advantages,

one being that it houses the Document in an easy-to-access medium. Indeed, a student can have

the Document at his/her fingertips with only three commands:

> install.packages("IPSUR")

> library(IPSUR)

> read(IPSUR)

Another advantage goes hand in hand with the Program’s license; since IPSUR is free, the

source code must be freely available to anyone that wants it. A package hosted on CRAN allows

the author to obey the license by default.

A much more important advantage is that the excellent facilities at R-Forge are building

and checking the package daily against patched and development versions of the absolute latest

pre-release of R. If any problems surface then I will know about it within 24 hours.

And finally, suppose there is some sort of problem. The package structure makes it in-

credibly easy for me to distribute bug-fixes and corrected typographical errors. As an author I

can make my corrections, upload them to the repository at R-Forge, and they will be reflected

worldwide within hours. We aren’t in Kansas anymore, Dorothy.

Ancillary Materials

These are extra materials that accompany IPSUR. They reside in the /etc subdirectory of the

package source.

IPSUR.RData is a saved image of the R workspace at the completion of the Sweave processing

of IPSUR. It can be loaded into memory with File ⊲ Load Workspace or with the com-

mand load("/path/to/IPSUR.Rdata"). Either method will make every single object

in the file immediately available and in memory. In particular, the data BLANK from

Exercise BLANK in Chapter BLANK on page BLANK will be loaded. Type BLANK at

the command line (after loading IPSUR.RData) to see for yourself.

IPSUR.R is the exported R code from IPSUR.Rnw. With this script, literally every R command

from the entirety of IPSUR can be resubmitted at the command line.

Notation

We use the notation x or stem.leaf notation to denote objects, functions, etc.. The sequence

“Statistics ⊲ Summaries ⊲ Active Dataset” means to click the Statistics menu item, next click

the Summaries submenu item, and finally click Active Dataset.
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Chapter 1

An Introduction to Probability and

Statistics

This chapter has proved to be the hardest to write, by far. The trouble is that there is so much

to say – and so many people have already said it so much better than I could. When I get

something I like I will release it here.

In the meantime, there is a lot of information already available to a person with an Internet

connection. I recommend to start at Wikipedia, which is not a flawless resource but it has the

main ideas with links to reputable sources.

In my lectures I usually tell stories about Fisher, Galton, Gauss, Laplace, Quetelet, and the

Chevalier de Mere.

1.1 Probability

The common folklore is that probability has been around for millennia but did not gain the

attention of mathematicians until approximately 1654 when the Chevalier de Mere had a ques-

tion regarding the fair division of a game’s payoff to the two players, if the game had to end

prematurely.

1.2 Statistics

Statistics concerns data; their collection, analysis, and interpretation. In this book we distin-

guish between two types of statistics: descriptive and inferential.

Descriptive statistics concerns the summarization of data. We have a data set and we would

like to describe the data set in multiple ways. Usually this entails calculating numbers from the

data, called descriptive measures, such as percentages, sums, averages, and so forth.

Inferential statistics does more. There is an inference associated with the data set, a conclu-

sion drawn about the population from which the data originated.

I would like to mention that there are two schools of thought of statistics: frequentist and

bayesian. The difference between the schools is related to how the two groups interpret the

underlying probability (see Section 4.3). The frequentist school gained a lot of ground among

statisticians due in large part to the work of Fisher, Neyman, and Pearson in the early twentieth

century. That dominance lasted until inexpensive computing power became widely available;

nowadays the bayesian school is garnering more attention and at an increasing rate.

1
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This book is devoted mostly to the frequentist viewpoint because that is how I was trained,

with the conspicuous exception of Sections 4.8 and 7.3. I plan to add more bayesian material

in later editions of this book.
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Chapter Exercises
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Chapter 2

An Introduction to R

2.1 Downloading and Installing R

The instructions for obtaining R largely depend on the user’s hardware and operating system.

The R Project has written an R Installation and Administration manual with complete, precise

instructions about what to do, together with all sorts of additional information. The following

is just a primer to get a person started.

2.1.1 Installing R

Visit one of the links below to download the latest version of R for your operating system:

Microsoft Windows: http://cran.r-project.org/bin/windows/base/

MacOS: http://cran.r-project.org/bin/macosx/

Linux: http://cran.r-project.org/bin/linux/

On Microsoft Windows, click the R-x.y.z.exe installer to start installation. When it asks for

"Customized startup options", specify Yes. In the next window, be sure to select the SDI (single

document interface) option; this is useful later when we discuss three dimensional plots with

the rgl package [1].

Installing R on a USB drive (Windows) With this option you can use R portably and without

administrative privileges. There is an entry in the R for Windows FAQ about this. Here is the

procedure I use:

1. Download theWindows installer above and start installation as usual. When it asks where

to install, navigate to the top-level directory of the USB drive instead of the default C

drive.

2. When it asks whether to modify the Windows registry, uncheck the box; we do NOT

want to tamper with the registry.

3. After installation, change the name of the folder from R-x.y.z to just plain R. (Even

quicker: do this in step 1.)

4. Download the following shortcut to the top-level directory of the USB drive, right beside

the R folder, not inside the folder.

5
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http://ipsur.r-forge.r-project.org/book/download/R.exe

Use the downloaded shortcut to run R.

Steps 3 and 4 are not required but save you the trouble of navigating to the R-x.y.z/bin

directory to double-click Rgui.exe every time you want to run the program. It is useless to

create your own shortcut to Rgui.exe. Windows does not allow shortcuts to have relative

paths; they always have a drive letter associated with them. So if you make your own shortcut

and plug your USB drive into some other machine that happens to assign your drive a different

letter, then your shortcut will no longer be pointing to the right place.

2.1.2 Installing and Loading Add-on Packages

There are base packages (which come with R automatically), and contributed packages (which

must be downloaded for installation). For example, on the version of R being used for this

document the default base packages loaded at startup are

> getOption("defaultPackages")

[1] "datasets" "utils" "grDevices" "graphics" "stats" "methods"

The base packages are maintained by a select group of volunteers, called “R Core”. In

addition to the base packages, there are literally thousands of additional contributed packages

written by individuals all over the world. These are stored worldwide on mirrors of the Compre-

hensive R Archive Network, or CRAN for short. Given an active Internet connection, anybody

is free to download and install these packages and even inspect the source code.

To install a package named foo, open up R and type install.packages("foo"). To

install foo and additionally install all of the other packages on which foo depends, instead

type install.packages("foo", depends = TRUE).

The general command install.packages() will (on most operating systems) open a

window containing a huge list of available packages; simply choose one or more to install.

No matter how many packages are installed onto the system, each one must first be loaded

for use with the library function. For instance, the foreign package [18] contains all sorts

of functions needed to import data sets into R from other software such as SPSS, SAS, etc.. But

none of those functions will be available until the command library(foreign) is issued.

Type library() at the command prompt (described below) to see a list of all available

packages in your library.

For complete, precise information regarding installation of R and add-on packages, see the

R Installation and Administration manual, http://cran.r-project.org/manuals.html.

2.2 Communicating with R

One line at a time This is the most basic method and is the first one that beginners will use.

RGui (MicrosoftrWindows)

Terminal

Emacs/ESS, XEmacs

JGR

http://ipsur.r-forge.r-project.org/book/download/R.exe
http://cran.r-project.org/manuals.html
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Multiple lines at a time For longer programs (called scripts) there is too much code to write

all at once at the command prompt. Furthermore, for longer scripts it is convenient to be

able to only modify a certain piece of the script and run it again in R. Programs called script

editors are specially designed to aid the communication and code writing process. They have all

sorts of helpful features including R syntax highlighting, automatic code completion, delimiter

matching, and dynamic help on the R functions as they are being written. Even more, they

often have all of the text editing features of programs like Microsoftr Word. Lastly, most

script editors are fully customizable in the sense that the user can customize the appearance of

the interface to choose what colors to display, when to display them, and how to display them.

R Editor (Windows): In MicrosoftrWindows, RGui has its own built-in script editor, called

R Editor. From the console window, select File ⊲ New Script. A script window opens,

and the lines of code can be written in the window. When satisfied with the code, the user

highlights all of the commands and presses Ctrl+R. The commands are automatically run

at once in R and the output is shown. To save the script for later, click File ⊲ Save as...

in R Editor. The script can be reopened later with File ⊲ Open Script... in RGui. Note

that R Editor does not have the fancy syntax highlighting that the others do.

RWinEdt: This option is coordinated with WinEdt for LATEX and has additional features such

as code highlighting, remote sourcing, and a ton of other things. However, one first needs

to download and install a shareware version of another program, WinEdt, which is only

free for a while – pop-up windows will eventually appear that ask for a registration code.

RWinEdt is nevertheless a very fine choice if you already own WinEdt or are planning to

purchase it in the near future.

Tinn-R/Sciviews-K: This one is completely free and has all of the above mentioned options

and more. It is simple enough to use that the user can virtually begin working with

it immediately after installation. But Tinn-R proper is only available for Microsoftr

Windows operating systems. If you are on MacOS or Linux, a comparable alternative is

Sci-Views - Komodo Edit.

Emacs/ESS: Emacs is an all purpose text editor. It can do absolutely anything with respect

to modifying, searching, editing, and manipulating, text. And if Emacs can’t do it, then

you can write a program that extends Emacs to do it. Once such extension is called ESS,

which stands for Emacs Speaks Statistics. With ESS a person can speak to R, do all of the

tricks that the other script editors offer, and much, much, more. Please see the following

for installation details, documentation, reference cards, and a whole lot more:

http://ess.r-project.org

Fair warning: if you want to try Emacs and if you grew up with Microsoftr Windows

or Macintosh, then you are going to need to relearn everything you thought you knew about

computers your whole life. (Or, since Emacs is completely customizable, you can reconfigure

Emacs to behave the way you want.) I have personally experienced this transformation and I

will never go back.

JGR (read “Jaguar”): This one has the bells and whistles of RGui plus it is based on Java,

so it works on multiple operating systems. It has its own script editor like R Editor but

with additional features such as syntax highlighting and code-completion. If you do not

use MicrosoftrWindows (or even if you do) you definitely want to check out this one.

http://ess.r-project.org
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Kate, Bluefish, etc. There are literally dozens of other text editors available, many of them

free, and each has its own (dis)advantages. I only have mentioned the ones with which I

have had substantial personal experience and have enjoyed at some point. Play around,

and let me know what you find.

Graphical User Interfaces (GUIs) By the word “GUI” I mean an interface in which the user

communicates with R by way of points-and-clicks in a menu of some sort. Again, there are

many, many options and I only mention ones that I have used and enjoyed. Some of the other

more popular script editors can be downloaded from theR-Project website at http://www.sciviews.org/_rgu

On the left side of the screen (under Projects) there are several choices available.

R Commander provides a point-and-click interface to many basic statistical tasks. It is called

the “Commander” because every time one makes a selection from the menus, the code

corresponding to the task is listed in the output window. One can take this code, copy-

and-paste it to a text file, then re-run it again at a later time without the R Comman-

der’s assistance. It is well suited for the introductory level. Rcmdr also allows for user-

contributed “Plugins” which are separate packages on CRAN that add extra functionality

to the Rcmdr package. The plugins are typically named with the prefix RcmdrPlugin to

make them easy to identify in the CRAN package list. One such plugin is the

RcmdrPlugin.IPSUR package which accompanies this text.

Poor Man’s GUI is an alternative to the Rcmdr which is based on GTk instead of Tcl/Tk. It

has been a while since I used it but I remember liking it very much when I did. One thing

that stood out was that the user could drag-and-drop data sets for plots. See here for more

information: http://wiener.math.csi.cuny.edu/pmg/.

Rattle is a data mining toolkit which was designed to manage/analyze very large data sets, but

it provides enough other general functionality to merit mention here. See [91] for more

information.

Deducer is relatively new and shows promise from what I have seen, but I have not actually

used it in the classroom yet.

2.3 Basic R Operations and Concepts

The R developers have written an introductory document entitled “An Introduction to R”. There

is a sample session included which shows what basic interaction with R looks like. I recom-

mend that all new users of R read that document, but bear in mind that there are concepts

mentioned which will be unfamiliar to the beginner.

Below are some of the most basic operations that can be done with R. Almost every book

about R begins with a section like the one below; look around to see all sorts of things that can

be done at this most basic level.

2.3.1 Arithmetic

> 2 + 3 # add

[1] 5

http://www.sciviews.org/_rgui/
http://wiener.math.csi.cuny.edu/pmg/
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> 4 * 5 / 6 # multiply and divide

[1] 3.333333

> 7^8 # 7 to the 8th power

[1] 5764801

Notice the comment character #. Anything typed after a # symbol is ignored by R. We

know that 20/6 is a repeating decimal, but the above example shows only 7 digits. We can

change the number of digits displayed with options:

> options(digits = 16)

> 10/3 # see more digits

[1] 3.333333333333333

> sqrt(2) # square root

[1] 1.414213562373095

> exp(1) # Euler's constant, e

[1] 2.718281828459045

> pi

[1] 3.141592653589793

> options(digits = 7) # back to default

Note that it is possible to set digits up to 22, but setting them over 16 is not recommended

(the extra significant digits are not necessarily reliable). Above notice the sqrt function for

square roots and the exp function for powers of e, Euler’s number.

2.3.2 Assignment, Object names, and Data types

It is often convenient to assign numbers and values to variables (objects) to be used later. The

proper way to assign values to a variable is with the <- operator (with a space on either side).

The = symbol works too, but it is recommended by the R masters to reserve = for specifying

arguments to functions (discussed later). In this book we will follow their advice and use <-

for assignment. Once a variable is assigned, its value can be printed by simply entering the

variable name by itself.

> x <- 7*41/pi # don't see the calculated value

> x # take a look

[1] 91.35494

When choosing a variable name you can use letters, numbers, dots “.”, or underscore “_”

characters. You cannot use mathematical operators, and a leading dot may not be followed by

a number. Examples of valid names are: x, x1, y.value, and y_hat. (More precisely, the set

of allowable characters in object names depends on one’s particular system and locale; see An

Introduction to R for more discussion on this.)

Objects can be of many types, modes, and classes. At this level, it is not necessary to

investigate all of the intricacies of the respective types, but there are some with which you need

to become familiar:
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integer: the values 0, ±1, ±2, . . . ; these are represented exactly by R.

double: real numbers (rational and irrational); these numbers are not represented exactly (save

integers or fractions with a denominator that is a multiple of 2, see [85]).

character: elements that are wrapped with pairs of " or ';

logical: includes TRUE, FALSE, and NA (which are reserved words); the NA stands for “not

available”, i.e., a missing value.

You can determine an object’s type with the typeof function. In addition to the above, there is

the complex data type:

> sqrt(-1) # isn't defined

[1] NaN

> sqrt(-1+0i) # is defined

[1] 0+1i

> sqrt(as.complex(-1)) # same thing

[1] 0+1i

> (0 + 1i)^2 # should be -1

[1] -1+0i

> typeof((0 + 1i)^2)

[1] "complex"

Note that you can just type (1i)^2 to get the same answer. The NaN stands for “not a

number”; it is represented internally as double.

2.3.3 Vectors

All of this time we have been manipulating vectors of length 1. Now let us move to vectors

with multiple entries.

Entering data vectors

1. c: If you would like to enter the data 74,31,95,61,76,34,23,54,96 into R, you may

create a data vector with the c function (which is short for concatenate).

> x <- c(74, 31, 95, 61, 76, 34, 23, 54, 96)

> x

[1] 74 31 95 61 76 34 23 54 96

The elements of a vector are usually coerced by R to the the most general type of any of

the elements, so if you do c(1, "2") then the result will be c("1", "2").
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2. scan: This method is useful when the data are stored somewhere else. For instance,

you may type x <- scan() at the command prompt and R will display 1: to indicate

that it is waiting for the first data value. Type a value and press Enter, at which point

R will display 2:, and so forth. Note that entering an empty line stops the scan. This

method is especially handy when you have a column of values, say, stored in a text file

or spreadsheet. You may copy and paste them all at the 1: prompt, and R will store all

of the values instantly in the vector x.

3. repeated data; regular patterns: the seq function will generate all sorts of sequences

of numbers. It has the arguments from, to, by, and length.out which can be set in

concert with one another. We will do a couple of examples to show you how it works.

> seq(from = 1, to = 5)

[1] 1 2 3 4 5

> seq(from = 2, by = -0.1, length.out = 4)

[1] 2.0 1.9 1.8 1.7

Note that we can get the first line much quicker with the colon operator :

> 1:5

[1] 1 2 3 4 5

The vector LETTERS has the 26 letters of the English alphabet in uppercase and letters

has all of them in lowercase.

Indexing data vectors Sometimes we do not want the whole vector, but just a piece of it. We

can access the intermediate parts with the [] operator. Observe (with x defined above)

> x[1]

[1] 74

> x[2:4]

[1] 31 95 61

> x[c(1, 3, 4, 8)]

[1] 74 95 61 54

> x[-c(1, 3, 4, 8)]

[1] 31 76 34 23 96

Notice that we used the minus sign to specify those elements that we do not want.

> LETTERS[1:5]

[1] "A" "B" "C" "D" "E"

> letters[-(6:24)]

[1] "a" "b" "c" "d" "e" "y" "z"
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2.3.4 Functions and Expressions

A function takes arguments as input and returns an object as output. There are functions to do

all sorts of things. We show some examples below.

> x <- 1:5

> sum(x)

[1] 15

> length(x)

[1] 5

> min(x)

[1] 1

> mean(x) # sample mean

[1] 3

> sd(x) # sample standard deviation

[1] 1.581139

It will not be long before the user starts to wonder how a particular function is doing its job,

and since R is open-source, anybody is free to look under the hood of a function to see how

things are calculated. For detailed instructions see the article “Accessing the Sources” by Uwe

Ligges [60]. In short:

1. Type the name of the function without any parentheses or arguments. If you are lucky

then the code for the entire function will be printed, right there looking at you. For

instance, suppose that we would like to see how the intersect function works:

> intersect

function (x, y)

{

y <- as.vector(y)

unique(y[match(as.vector(x), y, 0L)])

}

<environment: namespace:base>

2. If instead it shows UseMethod("something") then you will need to choose the class of

the object to be inputted and next look at the method that will be dispatched to the object.

For instance, typing rev says

> rev

function (x)

UseMethod("rev")

<environment: namespace:base>
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The output is telling us that there are multiple methods associated with the rev function.

To see what these are, type

> methods(rev)

[1] rev.default rev.dendrogram*

Non-visible functions are asterisked

Now we learn that there are two different rev(x) functions, only one of which being

chosen at each call depending on what x is. There is one for dendrogram objects and

a default method for everything else. Simply type the name to see what each method

does. For example, the default method can be viewed with

> rev.default

function (x)

if (length(x)) x[length(x):1L] else x

<environment: namespace:base>

3. Some functions are hidden by a namespace (see An Introduction to R [85]), and are not

visible on the first try. For example, if we try to look at the code for wilcox.test (see

Chapter 15) we get the following:

> wilcox.test

function (x, ...)

UseMethod("wilcox.test")

<environment: namespace:stats>

> methods(wilcox.test)

[1] wilcox.test.default* wilcox.test.formula*

Non-visible functions are asterisked

If we were to try wilcox.test.default we would get a “not found” error, because it

is hidden behind the namespace for the package stats (shown in the last line when we

tried wilcox.test). In cases like these we prefix the package name to the front of the

function name with three colons; the command stats:::wilcox.test.default will

show the source code, omitted here for brevity.

4. If it shows .Internal(something) or .Primitive("something"), then it will be nec-

essary to download the source code of R (which is not a binary version with an .exe

extension) and search inside the code there. See Ligges [60] for more discussion on this.

An example is exp:

> exp

function (x) .Primitive("exp")

Be warned that most of the .Internal functions are written in other computer languages

which the beginner may not understand, at least initially.
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2.4 Getting Help

When you are using R, it will not take long before you find yourself needing help. Fortunately,

R has extensive help resources and you should immediately become familiar with them. Begin

by clicking Help on Rgui. The following options are available.

• Console: gives useful shortcuts, for instance, Ctrl+L, to clear the R console screen.

• FAQ on R: frequently asked questions concerning general R operation.

• FAQ on R for Windows: frequently asked questions about R, tailored to the Microsoft

Windows operating system.

• Manuals: technical manuals about all features of the R system including installation, the

complete language definition, and add-on packages.

• R functions (text). . . : use this if you know the exact name of the function you want to

know more about, for example, mean or plot. Typing mean in the window is equivalent

to typing help("mean") at the command line, or more simply, ?mean. Note that this

method only works if the function of interest is contained in a package that is already

loaded into the search path with library.

• HTML Help: use this to browse the manuals with point-and-click links. It also has a

Search Engine & Keywords for searching the help page titles, with point-and-click links

for the search results. This is possibly the best help method for beginners. It can be

started from the command line with the command help.start().

• Search help. . . : use this if you do not know the exact name of the function of inter-

est, or if the function is in a package that has not been loaded yet. For example, you

may enter plo and a text window will return listing all the help files with an alias, con-

cept, or title matching ‘plo’ using regular expression matching; it is equivalent to typing

help.search("plo") at the command line. The advantage is that you do not need to

know the exact name of the function; the disadvantage is that you cannot point-and-click

the results. Therefore, one may wish to use the HTML Help search engine instead. An

equivalent way is ??plo at the command line.

• search.r-project.org. . . : this will search for words in help lists and email archives of the

R Project. It can be very useful for finding other questions that other users have asked.

• Apropos. . . : use this for more sophisticated partial name matching of functions. See

?apropos for details.

On the help pages for a function there are sometimes “Examples” listed at the bottom of the

page, which will work if copy-pasted at the command line (unless marked otherwise). The

example function will run the code automatically, skipping the intermediate step. For instance,

we may try example(mean) to see a few examples of how the mean function works.

2.4.1 R Help Mailing Lists

There are several mailing lists associated with R, and there is a huge community of people that

read and answer questions related to R. See here http://www.r-project.org/mail.html

http://www.r-project.org/mail.html
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for an idea of what is available. Particularly pay attention to the bottom of the page which lists

several special interest groups (SIGs) related to R.

Bear in mind that R is free software, which means that it was written by volunteers, and the

people that frequent the mailing lists are also volunteers who are not paid by customer support

fees. Consequently, if you want to use the mailing lists for free advice then you must adhere to

some basic etiquette, or else you may not get a reply, or even worse, you may receive a reply

which is a bit less cordial than you are used to. Below are a few considerations:

1. Read the FAQ (http://cran.r-project.org/faqs.html). Note that there are dif-

ferent FAQs for different operating systems. You should read these now, even without a

question at the moment, to learn a lot about the idiosyncrasies of R.

2. Search the archives. Even if your question is not a FAQ, there is a very high likelihood

that your question has been asked before on the mailing list. If you want to know about

topic foo, then you can do RSiteSearch("foo") to search the mailing list archives

(and the online help) for it.

3. Do a Google search and an RSeek.org search.

If your question is not a FAQ, has not been asked on R-help before, and does not yield to a

Google (or alternative) search, then, and only then, should you even consider writing to R-

help. Below are a few additional considerations.

1. Read the posting guide (http://www.r-project.org/posting-guide.html) be-

fore posting. This will save you a lot of trouble and pain.

2. Get rid of the command prompts (>) from output. Readers of your message will take the

text from your mail and copy-paste into an R session. If you make the readers’ job easier

then it will increase the likelihood of a response.

3. Questions are often related to a specific data set, and the best way to communicate the

data is with a dump command. For instance, if your question involves data stored in a

vector x, you can type dump("x","") at the command prompt and copy-paste the output

into the body of your email message. Then the reader may easily copy-paste the message

from your email into R and x will be available to him/her.

4. Sometimes the answer the question is related to the operating system used, the attached

packages, or the exact version of R being used. The sessionInfo() command collects

all of this information to be copy-pasted into an email (and the Posting Guide requests

this information). See Appendix A for an example.

2.5 External Resources

There is a mountain of information on the Internet about R. Below are a few of the important

ones.

The R Project for Statistical Computing: (http://www.r-project.org/) Go here first.

The Comprehensive R Archive Network: (http://cran.r-project.org/) This is where

R is stored along with thousands of contributed packages. There are also loads of con-

tributed information (books, tutorials, etc.). There are mirrors all over the world with

duplicate information.

http://cran.r-project.org/faqs.html
http://www.r-project.org/posting-guide.html
http://www.r-project.org/
http://cran.r-project.org/
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R-Forge: (http://r-forge.r-project.org/) This is another location where R packages

are stored. Here you can find development code which has not yet been released to

CRAN.

R Wiki: (http://wiki.r-project.org/rwiki/doku.php) There are many tips and tricks

listed here. If you find a trick of your own, login and share it with the world.

Other: the R Graph Gallery (http://addictedtor.free.fr/graphiques/) and R Graph-

ical Manual (http://bm2.genes.nig.ac.jp/RGM2/index.php) have literally thou-

sands of graphs to peruse. RSeek (http://www.rseek.org) is a search engine based

on Google specifically tailored for R queries.

2.6 Other Tips

It is unnecessary to retype commands repeatedly, since R remembers what you have recently

entered on the command line. On theMicrosoftrWindowsRGui, to cycle through the previous

commands just push the ↑ (up arrow) key. On Emacs/ESS the command is M-p (which means

hold down the Alt button and press “p”). More generally, the command history() will show

a whole list of recently entered commands.

• To find out what all variables are in the current work environment, use the commands

objects() or ls(). These list all available objects in the workspace. If you wish to

remove one or more variables, use remove(var1, var2, var3), or more simply use

rm(var1, var2, var3), and to remove all objects use rm(list = ls()).

• Another use of scan is when you have a long list of numbers (separated by spaces or on

different lines) already typed somewhere else, say in a text file. To enter all the data in

one fell swoop, first highlight and copy the list of numbers to the Clipboard with Edit ⊲

Copy (or by right-clicking and selecting Copy). Next type the x <- scan() command

in the R console, and paste the numbers at the 1: prompt with Edit ⊲ Paste. All of the

numbers will automatically be entered into the vector x.

• The command Ctrl+l clears the screen in the MicrosoftrWindows RGui. The compa-

rable command for Emacs/ESS is

• Once you use R for awhile there may be some commands that you wish to run automati-

cally whenever R starts. These commands may be saved in a file called Rprofile.site

which is usually in the etc folder, which lives in the R home directory (which on

MicrosoftrWindows usually is C:\Program Files\R). Alternatively, you can make a

file .Rprofile to be stored in the user’s home directory, or anywhere R is invoked. This

allows for multiple configurations for different projects or users. See “Customizing the

Environment” of An Introduction to R for more details.

• When exiting R the user is given the option to “save the workspace”. I recommend that

beginners DO NOT save the workspace when quitting. If Yes is selected, then all of

the objects and data currently in R’s memory is saved in a file located in the working

directory called .RData. This file is then automatically loaded the next time R starts

(in which case R will say [previously saved workspace restored]). This is a

valuable feature for experienced users of R, but I find that it causes more trouble than it

saves with beginners.

http://r-forge.r-project.org/
http://wiki.r-project.org/rwiki/doku.php
http://addictedtor.free.fr/graphiques/
http://bm2.genes.nig.ac.jp/RGM2/index.php
http://www.rseek.org
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Chapter 3

Data Description

In this chapter we introduce the different types of data that a statistician is likely to encounter,

and in each subsection we give some examples of how to display the data of that particular type.

Once we see how to display data distributions, we next introduce the basic properties of data

distributions. We qualitatively explore several data sets. Once that we have intuitive properties

of data sets, we next discuss how we may numerically measure and describe those properties

with descriptive statistics.

What do I want them to know?

• different data types, such as quantitative versus qualitative, nominal versus ordinal, and

discrete versus continuous

• basic graphical displays for assorted data types, and some of their (dis)advantages

• fundamental properties of data distributions, including center, spread, shape, and crazy

observations

• methods to describe data (visually/numerically) with respect to the properties, and how

the methods differ depending on the data type

• all of the above in the context of grouped data, and in particular, the concept of a factor

3.1 Types of Data

Loosely speaking, a datum is any piece of collected information, and a data set is a collection

of data related to each other in some way. We will categorize data into five types and describe

each in turn:

Quantitative data associated with a measurement of some quantity on an observational unit,

Qualitative data associated with some quality or property of the observational unit,

Logical data to represent true or false and which play an important role later,

Missing data that should be there but are not, and

Other types everything else under the sun.

In each subsection we look at some examples of the type in question and introduce methods to

display them.

19
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3.1.1 Quantitative data

Quantitative data are any data that measure or are associated with a measurement of the quantity

of something. They invariably assume numerical values. Quantitative data can be further

subdivided into two categories.

• Discrete data take values in a finite or countably infinite set of numbers, that is, all

possible values could (at least in principle) be written down in an ordered list. Examples

include: counts, number of arrivals, or number of successes. They are often represented

by integers, say, 0, 1, 2, etc..

• Continuous data take values in an interval of numbers. These are also known as scale

data, interval data, or measurement data. Examples include: height, weight, length, time,

etc. Continuous data are often characterized by fractions or decimals: 3.82, 7.0001, 4 5
8
,

etc..

Note that the distinction between discrete and continuous data is not always clear-cut. Some-

times it is convenient to treat data as if they were continuous, even though strictly speaking

they are not continuous. See the examples.

Example 3.1. Annual Precipitation in USCities. The vector precip contains average amount

of rainfall (in inches) for each of 70 cities in the United States and Puerto Rico. Let us take a

look at the data:

> str(precip)

Named num [1:70] 67 54.7 7 48.5 14 17.2 20.7 13 43.4 40.2 ...

- attr(*, "names")= chr [1:70] "Mobile" "Juneau" "Phoenix" "Little Rock" ...

> precip[1:4]

Mobile Juneau Phoenix Little Rock

67.0 54.7 7.0 48.5

The output shows that precip is a numeric vector which has been named, that is, each

value has a name associated with it (which can be set with the names function). These are

quantitative continuous data.

Example 3.2. Lengths of Major North American Rivers. The U.S. Geological Survey

recorded the lengths (in miles) of several rivers in North America. They are stored in the

vector rivers in the datasets package (which ships with base R). See ?rivers. Let us take

a look at the data with the str function.

> str(rivers)

num [1:141] 735 320 325 392 524 ...

The output says that rivers is a numeric vector of length 141, and the first few values are

735, 320, 325, etc. These data are definitely quantitative and it appears that the measurements

have been rounded to the nearest mile. Thus, strictly speaking, these are discrete data. But we

will find it convenient later to take data like these to be continuous for some of our statistical

procedures.
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Example 3.3. Yearly Numbers of Important Discoveries. The vector discoveries contains

numbers of “great” inventions/discoveries in each year from 1860 to 1959, as reported by the

1975 World Almanac. Let us take a look at the data:

> str(discoveries)

Time-Series [1:100] from 1860 to 1959: 5 3 0 2 0 3 2 3 6 1 ...

> discoveries[1:4]

[1] 5 3 0 2

The output is telling us that discoveries is a time series (see Section 3.1.5 for more) of

length 100. The entries are integers, and since they represent counts this is a good example of

discrete quantitative data. We will take a closer look in the following sections.

Displaying Quantitative Data

One of the first things to do when confronted by quantitative data (or any data, for that matter)

is to make some sort of visual display to gain some insight into the data’s structure. There are

almost as many display types from which to choose as there are data sets to plot. We describe

some of the more popular alternatives.

Strip charts (also known as Dot plots) These can be used for discrete or continuous data,

and usually look best when the data set is not too large. Along the horizontal axis is a numerical

scale above which the data values are plotted. We can do it in R with a call to the stripchart

function. There are three available methods.

overplot plots ties covering each other. This method is good to display only the distinct values

assumed by the data set.

jitter adds some noise to the data in the y direction in which case the data values are not

covered up by ties.

stack plots repeated values stacked on top of one another. This method is best used for discrete

data with a lot of ties; if there are no repeats then this method is identical to overplot.

See Figure 3.1.1, which is produced by the following code.

> stripchart(precip, xlab = "rainfall")

> stripchart(rivers, method = "jitter", xlab = "length")

> stripchart(discoveries, method = "stack", xlab = "number")

The leftmost graph is a strip chart of the precip data. The graph shows tightly clustered

values in the middle with some others falling balanced on either side, with perhaps slightly

more falling to the left. Later we will call this a symmetric distribution, see Section 3.2.3. The

middle graph is of the rivers data, a vector of length 141. There are several repeated values

in the rivers data, and if we were to use the overplot method we would lose some of them in

the display. This plot shows a what we will later call a right-skewed shape with perhaps some

extreme values on the far right of the display. The third graph strip charts discoveries data

which are literally a textbook example of a right skewed distribution.

The DOTplot function in the UsingR package [86] is another alternative.
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Figure 3.1.1: Strip charts of the precip, rivers, and discoveries data

The first graph uses the overplot method, the second the jitter method, and the third the stack

method.
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Figure 3.1.2: (Relative) frequency histograms of the precip data

Histogram These are typically used for continuous data. A histogram is constructed by first

deciding on a set of classes, or bins, which partition the real line into a set of boxes into which

the data values fall. Then vertical bars are drawn over the bins with height proportional to the

number of observations that fell into the bin.

These are one of the most common summary displays, and they are often misidentified as

“Bar Graphs” (see below.) The scale on the y axis can be frequency, percentage, or density

(relative frequency). The term histogram was coined by Karl Pearson in 1891, see [66].

Example 3.4. Annual Precipitation in US Cities. We are going to take another look at the

precip data that we investigated earlier. The strip chart in Figure 3.1.1 suggested a loosely

balanced distribution; let us now look to see what a histogram says.

There are many ways to plot histograms in R, and one of the easiest is with the hist

function. The following code produces the plots in Figure 3.1.2.

> hist(precip, main = "")

> hist(precip, freq = FALSE, main = "")

Notice the argument main = "", which suppresses the main title from being displayed

– it would have said “Histogram of precip” otherwise. The plot on the left is a frequency

histogram (the default), and the plot on the right is a relative frequency histogram (freq =

FALSE).

Please be careful regarding the biggest weakness of histograms: the graph obtained strongly

depends on the bins chosen. Choose another set of bins, and you will get a different histogram.
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Figure 3.1.3: More histograms of the precip data

Moreover, there are not any definitive criteria by which bins should be defined; the best choice

for a given data set is the one which illuminates the data set’s underlying structure (if any).

Luckily for us there are algorithms to automatically choose bins that are likely to display well,

and more often than not the default bins do a good job. This is not always the case, however, and

a responsible statistician will investigate many bin choices to test the stability of the display.

Example 3.5. Recall that the strip chart in Figure 3.1.1 suggested a relatively balanced shape

to the precip data distribution. Watch what happens when we change the bins slightly (with

the breaks argument to hist). See Figure 3.1.3 which was produced by the following code.

> hist(precip, breaks = 10, main = "")

> hist(precip, breaks = 200, main = "")

The leftmost graph (with breaks = 10) shows that the distribution is not balanced at all.

There are two humps: a big one in the middle and a smaller one to the left. Graphs like this

often indicate some underlying group structure to the data; we could now investigate whether

the cities for which rainfall was measured were similar in some way, with respect to geographic

region, for example.

The rightmost graph in Figure 3.1.3 shows what happens when the number of bins is too

large: the histogram is too grainy and hides the rounded appearance of the earlier histograms.

If we were to continue increasing the number of bins we would eventually get all observed bins

to have exactly one element, which is nothing more than a glorified strip chart.
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Stemplots (more to be said in Section 3.4) Stemplots have two basic parts: stems and leaves.

The final digit of the data values is taken to be a leaf, and the leading digit(s) is (are) taken to

be stems. We draw a vertical line, and to the left of the line we list the stems. To the right of the

line, we list the leaves beside their corresponding stem. There will typically be several leaves

for each stem, in which case the leaves accumulate to the right. It is sometimes necessary to

round the data values, especially for larger data sets.

Example 3.6. UKDriverDeaths is a time series that contains the total car drivers killed or

seriously injured in Great Britain monthly from Jan 1969 to Dec 1984. See ?UKDriverDeaths.

Compulsory seat belt use was introduced on January 31, 1983. We construct a stem and leaf

diagram in R with the stem.leaf function from the aplpack package [92].

> library(aplpack)

> stem.leaf(UKDriverDeaths, depth = FALSE)

1 | 2: represents 120

leaf unit: 10

n: 192

10 | 57

11 | 136678

12 | 123889

13 | 0255666888899

14 | 00001222344444555556667788889

15 | 0000111112222223444455555566677779

16 | 01222333444445555555678888889

17 | 11233344566667799

18 | 00011235568

19 | 01234455667799

20 | 0000113557788899

21 | 145599

22 | 013467

23 | 9

24 | 7

HI: 2654

The display shows a more or less balanced mound-shaped distribution, with one or maybe

two humps, a big one and a smaller one just to its right. Note that the data have been rounded

to the tens place so that each datum gets only one leaf to the right of the dividing line.

Notice that the depths have been suppressed. To learn more about this option and many

others, see Section 3.4. Unlike a histogram, the original data values may be recovered from the

stemplot display – modulo the rounding – that is, starting from the top and working down we

can read off the data values 1050, 1070, 1110, 1130, etc.

Index plot Done with the plot function. These are good for plotting data which are ordered,

for example, when the data are measured over time. That is, the first observation was measured

at time 1, the second at time 2, etc. It is a two dimensional plot, in which the index (or time) is

the x variable and the measured value is the y variable. There are several plotting methods for

index plots, and we discuss two of them:
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spikes: draws a vertical line from the x-axis to the observation height (type = "h").

points: plots a simple point at the observation height (type = "p").

Example 3.7. Level of Lake Huron 1875-1972. Brockwell and Davis [11] give the annual

measurements of the level (in feet) of Lake Huron from 1875–1972. The data are stored in the

time series LakeHuron. See ?LakeHuron. Figure 3.1.4 was produced with the following code:

> plot(LakeHuron, type = "h")

> plot(LakeHuron, type = "p")

The plots show an overall decreasing trend to the observations, and there appears to be some

seasonal variation that increases over time.

3.1.2 Qualitative Data, Categorical Data, and Factors

Qualitative data are simply any type of data that are not numerical, or do not represent numerical

quantities. Examples of qualitative variables include a subject’s name, gender, race/ethnicity,

political party, socioeconomic status, class rank, driver’s license number, and social security

number (SSN).

Please bear in mind that some data look to be quantitative but are not, because they do not

represent numerical quantities and do not obey mathematical rules. For example, a person’s

shoe size is typically written with numbers: 8, or 9, or 12, or 12 1
2
. Shoe size is not quantitative,

however, because if we take a size 8 and combine with a size 9 we do not get a size 17.

Some qualitative data serve merely to identify the observation (such a subject’s name,

driver’s license number, or SSN). This type of data does not usually play much of a role in

statistics. But other qualitative variables serve to subdivide the data set into categories; we call

these factors. In the above examples, gender, race, political party, and socioeconomic status

would be considered factors (shoe size would be another one). The possible values of a factor

are called its levels. For instance, the factor gender would have two levels, namely, male and

female. Socioeconomic status typically has three levels: high, middle, and low.

Factors may be of two types: nominal and ordinal. Nominal factors have levels that cor-

respond to names of the categories, with no implied ordering. Examples of nominal factors

would be hair color, gender, race, or political party. There is no natural ordering to “Democrat”

and “Republican”; the categories are just names associated with different groups of people.

In contrast, ordinal factors have some sort of ordered structure to the underlying factor

levels. For instance, socioeconomic status would be an ordinal categorical variable because

the levels correspond to ranks associated with income, education, and occupation. Another

example of ordinal categorical data would be class rank.

Factors have special status in R. They are represented internally by numbers, but even

when they are written numerically their values do not convey any numeric meaning or obey

any mathematical rules (that is, Stage III cancer is not Stage I cancer + Stage II cancer).

Example 3.8. The state.abb vector gives the two letter postal abbreviations for all 50 states.

> str(state.abb)

chr [1:50] "AL" "AK" "AZ" "AR" "CA" "CO" "CT" "DE" ...

These would be ID data. The state.name vector lists all of the complete names and those

data would also be ID.
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Figure 3.1.4: Index plots of the LakeHuron data
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Example 3.9. U.S. State Facts and Features. The U.S. Department of Commerce of the

U.S. Census Bureau releases all sorts of information in the Statistical Abstract of the United

States, and the state.region data lists each of the 50 states and the region to which it belongs,

be it Northeast, South, North Central, or West. See ?state.region.

> str(state.region)

Factor w/ 4 levels "Northeast","South",..: 2 4 4 2 4 4 1 2 2 2 ...

> state.region[1:5]

[1] South West West South West

Levels: Northeast South North Central West

The str output shows that state.region is already stored internally as a factor and it lists

a couple of the factor levels. To see all of the levels we printed the first five entries of the vector

in the second line.need to print a piece of the from

Displaying Qualitative Data

Tables One of the best ways to summarize qualitative data is with a table of the data values.

We may count frequencies with the table function or list proportions with the prop.table

function (whose input is a frequency table). In the R Commander you can do it with Statistics ⊲

Frequency Distribution. . . . Alternatively, to look at tables for all factors in the Active data

set you can do Statistics ⊲ Summaries ⊲ Active Dataset.

> Tbl <- table(state.division)

> Tbl # frequencies

state.division

New England Middle Atlantic South Atlantic

6 3 8

East South Central West South Central East North Central

4 4 5

West North Central Mountain Pacific

7 8 5

> Tbl/sum(Tbl) # relative frequencies

state.division

New England Middle Atlantic South Atlantic

0.12 0.06 0.16

East South Central West South Central East North Central

0.08 0.08 0.10

West North Central Mountain Pacific

0.14 0.16 0.10

> prop.table(Tbl) # same thing

state.division

New England Middle Atlantic South Atlantic

0.12 0.06 0.16

East South Central West South Central East North Central

0.08 0.08 0.10

West North Central Mountain Pacific

0.14 0.16 0.10
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Figure 3.1.5: Bar graphs of the state.region data

The left graph is a frequency barplot made with table and the right is a relative frequency barplot made

with prop.table.

Bar Graphs A bar graph is the analogue of a histogram for categorical data. A bar is dis-

played for each level of a factor, with the heights of the bars proportional to the frequencies of

observations falling in the respective categories. A disadvantage of bar graphs is that the levels

are ordered alphabetically (by default), which may sometimes obscure patterns in the display.

Example 3.10. U.S. State Facts and Features. The state.region data lists each of the 50

states and the region to which it belongs, be it Northeast, South, North Central, or West. See

?state.region. It is already stored internally as a factor. We make a bar graph with the

barplot function:

> barplot(table(state.region), cex.names = 0.5)

> barplot(prop.table(table(state.region)), cex.names = 0.5)

See Figure 3.1.5. The display on the left is a frequency bar graph because the y axis shows

counts, while the display on the left is a relative frequency bar graph. The only difference

between the two is the scale. Looking at the graph we see that the majority of the fifty states

are in the South, followed by West, North Central, and finally Northeast. Over 30% of the

states are in the South.

Notice the cex.names argument that we used, above. It shrinks the names on the x axis by

50%which makes them easier to read. See ?par for a detailed list of additional plot parameters.
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Pareto Diagrams A pareto diagram is a lot like a bar graph except the bars are rearranged

such that they decrease in height going from left to right. The rearrangement is handy because

it can visually reveal structure (if any) in how fast the bars decrease – this is much more difficult

when the bars are jumbled.

Example 3.11. U.S. State Facts and Features. The state.division data record the division

(New England, Middle Atlantic, South Atlantic, East South Central, West South Central, East

North Central, West North Central, Mountain, and Pacific) of the fifty states. We can make

a pareto diagram with either the RcmdrPlugin.IPSUR package or with the pareto.chart

function from the qcc package [77]. See Figure 3.1.6. The code follows.

> library(qcc)

> pareto.chart(table(state.division), ylab = "Frequency")

Dot Charts These are a lot like a bar graph that has been turned on its side with the bars

replaced by dots on horizontal lines. They do not convey any more (or less) information than

the associated bar graph, but the strength lies in the economy of the display. Dot charts are

so compact that it is easy to graph very complicated multi-variable interactions together in

one graph. See Section 3.6. We will give an example here using the same data as above for

comparison. The graph was produced by the following code.

> x <- table(state.region)

> dotchart(as.vector(x), labels = names(x))

See Figure 3.1.7. Compare it to Figure 3.1.5.

Pie Graphs These can be done with R and the R Commander, but they fallen out of favor in

recent years because researchers have determined that while the human eye is good at judging

linear measures, it is notoriously bad at judging relative areas (such as those displayed by a pie

graph). Pie charts are consequently a very bad way of displaying information. A bar chart or

dot chart is a preferable way of displaying qualitative data. See ?pie for more information.

We are not going to do any examples of a pie graph and discourage their use elsewhere.

3.1.3 Logical Data

There is another type of information recognized by R which does not fall into the above cat-

egories. The value is either TRUE or FALSE (note that equivalently you can use 1 = TRUE,

0 = FALSE). Here is an example of a logical vector:

> x <- 5:9

> y <- (x < 7.3)

> y

[1] TRUE TRUE TRUE FALSE FALSE

Many functions in R have options that the user may or may not want to activate in the

function call. For example, the stem.leaf function has the depths argument which is TRUE

by default. We saw in Section 3.1.1 how to turn the option off, simply enter stem.leaf(x,

depths = FALSE) and they will not be shown on the display.

We can swap TRUE with FALSE with the exclamation point !.
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Package 'qcc', version 2.0.1

Type 'citation("qcc")' for citing this R package in publications.

Pareto chart analysis for table(state.division)

Frequency Cum.Freq. Percentage Cum.Percent.

Mountain 8 8 16 16

South Atlantic 8 16 16 32

West North Central 7 23 14 46

New England 6 29 12 58

Pacific 5 34 10 68

East North Central 5 39 10 78

West South Central 4 43 8 86

East South Central 4 47 8 94

Middle Atlantic 3 50 6 100
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F
re

q
u
e
n
c
y

0
1
0

2
0

3
0

4
0

5
0

0
%

2
5
%

7
5
%

C
u
m

u
la

ti
ve

 P
e
rc

e
n
ta

g
e

Figure 3.1.6: Pareto chart of the state.division data
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Figure 3.1.7: Dot chart of the state.region data

> !y

[1] FALSE FALSE FALSE TRUE TRUE

3.1.4 Missing Data

Missing data are a persistent and prevalent problem in many statistical analyses, especially

those associated with the social sciences. R reserves the special symbol NA to representing

missing data.

Ordinary arithmetic with NA values give NA’s (addition, subtraction, etc.) and applying a

function to a vector that has an NA in it will usually give an NA.

> x <- c(3, 7, NA, 4, 7)

> y <- c(5, NA, 1, 2, 2)

> x + y

[1] 8 NA NA 6 9

Some functions have a na.rm argument which when TRUE will ignore missing data as if it

were not there (such as mean, var, sd, IQR, mad, . . . ).

> sum(x)

[1] NA
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> sum(x, na.rm = TRUE)

[1] 21

Other functions do not have a na.rm argument and will return NA or an error if the argument

has NAs. In those cases we can find the locations of any NAs with the is.na function and remove

those cases with the [] operator.

> is.na(x)

[1] FALSE FALSE TRUE FALSE FALSE

> z <- x[!is.na(x)]

> sum(z)

[1] 21

The analogue of is.na for rectangular data sets (or data frames) is the complete.cases

function. See Appendix D.4.

3.1.5 Other Data Types

3.2 Features of Data Distributions

Given that the data have been appropriately displayed, the next step is to try to identify salient

features represented in the graph. The acronym to remember is Center, Unusual features,

Spread, and Shape. (CUSS).

3.2.1 Center

One of the most basic features of a data set is its center. Loosely speaking, the center of a data

set is associated with a number that represents a middle or general tendency of the data. Of

course, there are usually several values that would serve as a center, and our later tasks will be

focused on choosing an appropriate one for the data at hand. Judging from the histogram that

we saw in Figure 3.1.3, a measure of center would be about 35.

3.2.2 Spread

The spread of a data set is associated with its variability; data sets with a large spread tend to

cover a large interval of values, while data sets with small spread tend to cluster tightly around

a central value.

3.2.3 Shape

When we speak of the shape of a data set, we are usually referring to the shape exhibited by

an associated graphical display, such as a histogram. The shape can tell us a lot about any

underlying structure to the data, and can help us decide which statistical procedure we should

use to analyze them.
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Symmetry and Skewness A distribution is said to be right-skewed (or positively skewed)

if the right tail seems to be stretched from the center. A left-skewed (or negatively skewed)

distribution is stretched to the left side. A symmetric distribution has a graph that is balanced

about its center, in the sense that half of the graph may be reflected about a central line of

symmetry to match the other half.

We have already encountered skewed distributions: both the discoveries data in Figure

3.1.1 and the precip data in Figure 3.1.3 appear right-skewed. The UKDriverDeaths data in

Example 3.6 is relatively symmetric (but note the one extreme value 2654 identified at the

bottom of the stemplot).

Kurtosis Another component to the shape of a distribution is how “peaked” it is. Some dis-

tributions tend to have a flat shape with thin tails. These are called platykurtic, and an example

of a platykurtic distribution is the uniform distribution; see Section 6.2. On the other end of

the spectrum are distributions with a steep peak, or spike, accompanied by heavy tails; these

are called leptokurtic. Examples of leptokurtic distributions are the Laplace distribution and

the logistic distribution. See Section 6.5. In between are distributions (called mesokurtic) with

a rounded peak and moderately sized tails. The standard example of a mesokurtic distribution

is the famous bell-shaped curve, also known as the Gaussian, or normal, distribution, and the

binomial distribution can be mesokurtic for specific choices of p. See Sections 5.3 and 6.3.

3.2.4 Clusters and Gaps

Clusters or gaps are sometimes observed in quantitative data distributions. They indicate

clumping of the data about distinct values, and gaps may exist between clusters. Clusters

often suggest an underlying grouping to the data. For example, take a look at the faithful

data which contains the duration of eruptions and the waiting time between eruptions of

the Old Faithful geyser in Yellowstone National Park. (Do not be frightened by the complicated

information at the left of the display for now; we will learn how to interpret it in Section 3.4).

> library(aplpack)

> stem.leaf(faithful$eruptions)

1 | 2: represents 1.2

leaf unit: 0.1

n: 272

12 s | 667777777777

51 1. | 888888888888888888888888888899999999999

71 2* | 00000000000011111111

87 t | 2222222222333333

92 f | 44444

94 s | 66

97 2. | 889

98 3* | 0

102 t | 3333

108 f | 445555

118 s | 6666677777

(16) 3. | 8888888889999999

138 4* | 0000000000000000111111111111111

107 t | 22222222222233333333333333333
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78 f | 44444444444445555555555555555555555

43 s | 6666666666677777777777

21 4. | 88888888888899999

4 5* | 0001

There are definitely two clusters of data here; an upper cluster and a lower cluster.

3.2.5 Extreme Observations and other Unusual Features

Extreme observations fall far from the rest of the data. Such observations are troublesome to

many statistical procedures; they cause exaggerated estimates and instability. It is important to

identify extreme observations and examine the source of the data more closely. There are many

possible reasons underlying an extreme observation:

• Maybe the value is a typographical error. Especially with large data sets becoming

more prevalent, many of which being recorded by hand, mistakes are a common problem.

After closer scrutiny, these can often be fixed.

• Maybe the observation was not meant for the study, because it does not belong to the

population of interest. For example, in medical research some subjects may have relevant

complications in their genealogical history that would rule out their participation in the

experiment. Or when a manufacturing company investigates the properties of one of its

devices, perhaps a particular product is malfunctioning and is not representative of the

majority of the items.

• Maybe it indicates a deeper trend or phenomenon. Many of the most influential sci-

entific discoveries were made when the investigator noticed an unexpected result, a value

that was not predicted by the classical theory. Albert Einstein, Louis Pasteur, and others

built their careers on exactly this circumstance.

3.3 Descriptive Statistics

3.3.1 Frequencies and Relative Frequencies

These are used for categorical data. The idea is that there are a number of different categories,

and we would like to get some idea about how the categories are represented in the population.

For example, we may want to see how the

3.3.2 Measures of Center

The sample mean is denoted x (read “x-bar”) and is simply the arithmetic average of the obser-

vations:

x =
x1 + x2 + · · · + xn

n
=

1

n

n∑

i=1

xi. (3.3.1)

• Good: natural, easy to compute, has nice mathematical properties

• Bad: sensitive to extreme values
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It is appropriate for use with data sets that are not highly skewed without extreme observations.

The sample median is another popular measure of center and is denoted x̃. To calculate

its value, first sort the data into an increasing sequence of numbers. If the data set has an odd

number of observations then x̃ is the value of the middle observation, which lies in position

(n + 1)/2; otherwise, there are two middle observations and x̃ is the average of those middle

values.

• Good: resistant to extreme values, easy to describe

• Bad: not as mathematically tractable, need to sort the data to calculate

One desirable property of the sample median is that it is resistant to extreme observations, in

the sense that the value of x̃ depends only the values of the middle observations, and is quite

unaffected by the actual values of the outer observations in the ordered list. The same cannot

be said for the sample mean. Any significant changes in the magnitude of an observation xk
results in a corresponding change in the value of the mean. Hence, the sample mean is said to

be sensitive to extreme observations.

The trimmed mean is a measure designed to address the sensitivity of the sample mean to

extreme observations. The idea is to “trim” a fraction (less than 1/2) of the observations off

each end of the ordered list, and then calculate the sample mean of what remains. We will

denote it by xt=0.05.

• Good: resistant to extreme values, shares nice statistical properties

• Bad: need to sort the data

3.3.3 How to do it with R

• You can calculate frequencies or relative frequencies with the table function, and rela-

tive frequencies with prop.table(table()).

• You can calculate the sample mean of a data vector x with the command mean(x).

• You can calculate the sample median of x with the command median(x).

• You can calculate the trimmedmean with the trim argument; mean(x, trim = 0.05).

3.3.4 Order Statistics and the Sample Quantiles

A common first step in an analysis of a data set is to sort the values. Given a data set x1, x2,

. . . ,xn, we may sort the values to obtain an increasing sequence

x(1) ≤ x(2) ≤ x(3) ≤ · · · ≤ x(n) (3.3.2)

and the resulting values are called the order statistics. The kth entry in the list, x(k), is the k
th

order statistic, and approximately 100(k/n)% of the observations fall below x(k). The order

statistics give an indication of the shape of the data distribution, in the sense that a person can

look at the order statistics and have an idea about where the data are concentrated, and where

they are sparse.

The sample quantiles are related to the order statistics. Unfortunately, there is not a uni-

versally accepted definition of them. Indeed, R is equipped to calculate quantiles using nine
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distinct definitions! We will describe the default method (type = 7), but the interested reader

can see the details for the other methods with ?quantile.

Suppose the data set has n observations. Find the sample quantile of order p (0 < p < 1),

denoted q̃p , as follows:

First step: sort the data to obtain the order statistics x(1), x(2), . . . ,x(n).

Second step: calculate (n − 1)p + 1 and write it in the form k.d, where k is an integer and d is

a decimal.

Third step: The sample quantile q̃p is

q̃p = x(k) + d(x(k+1) − x(k)). (3.3.3)

The interpretation of q̃p is that approximately 100p% of the data fall below the value q̃p .

Keep in mind that there is not a unique definition of percentiles, quartiles, etc. Open a

different book, and you’ll find a different procedure. The difference is small and seldom plays

a role except in small data sets with repeated values. In fact, most people do not even notice in

common use.

Clearly, the most popular sample quantile is q̃0.50, also known as the sample median, x̃. The

closest runners-up are the first quartile q̃0.25 and the third quartile q̃0.75 (the second quartile is

the median).

3.3.5 How to do it with R

At the command prompt We can find the order statistics of a data set stored in a vector x

with the command sort(x).

You can calculate the sample quantiles of any order p where 0 < p < 1 for a data set stored

in a data vector x with the quantile function, for instance, the command quantile(x,

probs = c(0, 0.25, 0.37)) will return the smallest observation, the first quartile, q̃0.25,

and the 37th sample quantile, q̃0.37. For q̃p simply change the values in the probs argument to

the value p.

With the R Commander In Rcmdr we can find the order statistics of a variable in the

Active data set by doing Data ⊲ Manage variables in Active data set. . . ⊲ Compute

new variable. . . . In the Expression to compute dialog simply type sort(varname), where

varname is the variable that it is desired to sort.

In Rcmdr, we can calculate the sample quantiles for a particular variable with the sequence

Statistics ⊲ Summaries ⊲ Numerical Summaries. . . . We can automatically calculate the quar-

tiles for all variables in the Active data set with the sequence Statistics ⊲ Summaries ⊲

Active Dataset.

3.3.6 Measures of Spread

Sample Variance and Standard Deviation The sample variance is denoted s2 and is calcu-

lated with the formula

s2 =
1

n − 1

n∑

i=1

(xi − x)2. (3.3.4)
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The sample standard deviation is s =
√
s2. Intuitively, the sample variance is approximately

the average squared distance of the observations from the sample mean. The sample standard

deviation is used to scale the estimate back to the measurement units of the original data.

• Good: tractable, has nice mathematical/statistical properties

• Bad: sensitive to extreme values

We will spend a lot of time with the variance and standard deviation in the coming chapters.

In the meantime, the following two rules give some meaning to the standard deviation, in that

there are bounds on how much of the data can fall past a certain distance from the mean.

Fact 3.12. Chebychev’s Rule: The proportion of observations within k standard deviations of

the mean is at least 1 − 1/k2, i.e., at least 75%, 89%, and 94% of the data are within 2, 3, and

4 standard deviations of the mean, respectively.

Note that Chebychev’s Rule does not say anything about when k = 1, because 1−1/12 = 0,

which states that at least 0% of the observations are within one standard deviation of the mean

(which is not saying much).

Chebychev’s Rule applies to any data distribution, any list of numbers, no matter where it

came from or what the histogram looks like. The price for such generality is that the bounds

are not very tight; if we know more about how the data are shaped then we can say more about

how much of the data can fall a given distance from the mean.

Fact 3.13. Empirical Rule: If data follow a bell-shaped curve, then approximately 68%, 95%,

and 99.7% of the data are within 1, 2, and 3 standard deviations of the mean, respectively.

Interquartile Range Just as the sample mean is sensitive to extreme values, so the associated

measure of spread is similarly sensitive to extremes. Further, the problem is exacerbated by the

fact that the extreme distances are squared. We know that the sample quartiles are resistant

to extremes, and a measure of spread associated with them is the interquartile range (IQR)

defined by IQR = q0.75 − q0.25.

• Good: stable, resistant to outliers, robust to nonnormality, easy to explain

• Bad: not as tractable, need to sort the data, only involves the middle 50% of the data.

Median Absolute Deviation A measure even more robust than the IQR is the median abso-

lute deviation (MAD). To calculate it we first get the median x̃, next the absolute deviations

|x1 − x̃|, |x2 − x̃|, . . . , |xn − x̃|, and the MAD is proportional to the median of those deviations:

MAD ∝ median(|x1 − x̃|, |x2 − x̃|, . . . , |xn − x̃|). (3.3.5)

That is, the MAD = c · median(|x1 − x̃|, |x2 − x̃|, . . . , |xn − x̃|), where c is a constant chosen so

that the MAD has nice properties. The value of c in R is by default c = 1.4286. This value

is chosen to ensure that the estimator of σ is correct, on the average, under suitable sampling

assumptions (see Section 9.1).

• Good: stable, very robust, even more so than the IQR.

• Bad: not tractable, not well known and less easy to explain.
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Comparing Apples to Apples

We have seen three different measures of spread which, for a given data set, will give three

different answers. Which one should we use? It depends on the data set. If the data are well

behaved, with an approximate bell-shaped distribution, then the sample mean and sample stan-

dard deviation are natural choices with nice mathematical properties. However, if the data have

an unusual or skewed shape with several extreme values, perhaps the more resistant choices

among the IQR or MAD would be more appropriate.

However, once we are looking at the three numbers it is important to understand that the

estimators are not all measuring the same quantity, on the average. In particular, it can be shown

that when the data follow an approximately bell-shaped distribution, then on the average, the

sample standard deviation s and the MAD will be the approximately the same value, namely,

σ, but the IQR will be on the average 1.349 times larger than s and the MAD. See 8 for more

details.

3.3.7 How to do it with R

At the command prompt From the console wemay compute the sample range with range(x)

and the sample variance with var(x), where x is a numeric vector. The sample standard devi-

ation is sqrt(var(x)) or just sd(x). The IQR is IQR(x) and the median absolute deviation

is mad(x).

In R Commander In Rcmdr we can calculate the sample standard deviation with the Statis-

tics ⊲ Summaries ⊲ Numerical Summaries. . . combination. R Commander does not calculate

the IQR or MAD in any of the menu selections, by default.

3.3.8 Measures of Shape

Sample Skewness The sample skewness, denoted by g1, is defined by the formula

g1 =
1

n

∑n
i=1(xi − x)3

s3
. (3.3.6)

The sample skewness can be any value −∞ < g1 < ∞. The sign of g1 indicates the direction of
skewness of the distribution. Samples that have g1 > 0 indicate right-skewed distributions (or

positively skewed), and samples with g1 < 0 indicate left-skewed distributions (or negatively

skewed). Values of g1 near zero indicate a symmetric distribution. These are not hard and

fast rules, however. The value of g1 is subject to sampling variability and thus only provides a

suggestion to the skewness of the underlying distribution.

We still need to know how big is “big”, that is, how do we judge whether an observed value

of g1 is far enough away from zero for the data set to be considered skewed to the right or

left? A good rule of thumb is that data sets with skewness larger than 2
√
6/n in magnitude

are substantially skewed, in the direction of the sign of g1. See Tabachnick & Fidell [83] for

details.

Sample Excess Kurtosis The sample excess kurtosis, denoted by g2, is given by the formula

g2 =
1

n

∑n
i=1(xi − x)4

s4
− 3. (3.3.7)
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The sample excess kurtosis takes values −2 ≤ g2 < ∞. The subtraction of 3 may seem myste-

rious but it is done so that mound shaped samples have values of g2 near zero. Samples with

g2 > 0 are called leptokurtic, and samples with g2 < 0 are called platykurtic. Samples with

g2 ≈ 0 are called mesokurtic.

As a rule of thumb, if |g2| > 4
√
6/n then the sample excess kurtosis is substantially different

from zero in the direction of the sign of g2. See Tabachnick & Fidell [83] for details.

Notice that both the sample skewness and the sample kurtosis are invariant with respect to

location and scale, that is, the values of g1 and g2 do not depend on the measurement units of

the data.

3.3.9 How to do it with R

The e1071 package [22] has the skewness function for the sample skewness and the kurtosis

function for the sample excess kurtosis. Both functions have a na.rm argument which is FALSE

by default.

Example 3.14. We said earlier that the discoveries data looked positively skewed; let’s see

what the statistics say:

> library(e1071)

> skewness(discoveries)

[1] 1.207600

> 2 * sqrt(6/length(discoveries))

[1] 0.4898979

The data are definitely skewed to the right. Let us check the sample excess kurtosis of the

UKDriverDeaths data:

> kurtosis(UKDriverDeaths)

[1] 0.07133848

> 4 * sqrt(6/length(UKDriverDeaths))

[1] 0.7071068

so that the UKDriverDeaths data appear to be mesokurtic, or at least not substantially

leptokurtic.

3.4 Exploratory Data Analysis

This field was founded (mostly) by John Tukey (1915-2000). Its tools are useful when not

much is known regarding the underlying causes associated with the data set, and are often used

for checking assumptions. For example, suppose we perform an experiment and collect some

data. . . now what? We look at the data using exploratory visual tools.
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3.4.1 More About Stemplots

There are many bells and whistles associated with stemplots, and the stem.leaf function can

do many of them.

Trim Outliers: Some data sets have observations that fall far from the bulk of the other data

(in a sense made more precise in Section 3.4.6). These extreme observations often ob-

scure the underlying structure to the data and are best left out of the data display. The

trim.outliers argument (which is TRUE by default) will separate the extreme observa-

tions from the others and graph the stemplot without them; they are listed at the bottom

(respectively, top) of the stemplot with the label HI (respectively LO).

Split Stems: The standard stemplot has only one line per stem, which means that all observa-

tions with first digit 3 are plotted on the same line, regardless of the value of the second

digit. But this gives some stemplots a “skyscraper” appearance, with too many observa-

tions stacked onto the same stem. We can often fix the display by increasing the number

of lines available for a given stem. For example, we could make two lines per stem, say,

3* and 3.. Observations with second digit 0 through 4 would go on the upper line, while

observations with second digit 5 through 9 would go on the lower line. (We could do

a similar thing with five lines per stem, or even ten lines per stem.) The end result is a

more spread out stemplot which often looks better. A good example of this was shown

on page 34.

Depths: these are used to give insight into the balance of the observations as they accumu-

late toward the median. In a column beside the standard stemplot, the frequency of the

stem containing the sample median is shown in parentheses. Next, frequencies are ac-

cumulated from the outside inward, including the outliers. Distributions that are more

symmetric will have better balanced depths on either side of the sample median.

3.4.2 How to do it with R

At the command prompt The basic command is stem(x) or a more sophisticated ver-

sion written by Peter Wolf called stem.leaf(x) in the R Commander. We will describe

stem.leaf since that is the one used by R Commander.

With the R Commander WARNING: Sometimes when making a stem plot the result will

not be what you expected. There are several reasons for this:

• Stemplots by default will trim extreme observations (defined in Section 3.4.6) from the

display. This in some cases will result in stemplots that are not as wide as expected.

• The leafs digit is chosen automatically by stem.leaf according to an algorithm that the

computer believes will represent the data well. Depending on the choice of the digit,

stem.leaf may drop digits from the data or round the values in unexpected ways.

Let us take a look at the rivers data set.

> stem.leaf(rivers)
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1 | 2: represents 120

leaf unit: 10

n: 141

1 1 | 3

29 2 | 0111133334555556666778888899

64 3 | 00000111122223333455555666677888999

(18) 4 | 011222233344566679

59 5 | 000222234467

47 6 | 0000112235789

34 7 | 12233368

26 8 | 04579

21 9 | 0008

17 10 | 035

14 11 | 07

12 12 | 047

9 13 | 0

HI: 1450 1459 1770 1885 2315 2348 2533 3710

The stemplot shows a right-skewed shape to the rivers data distribution. Notice that the

last digit of each of the data values were dropped from the display. Notice also that there were

eight extreme observations identified by the computer, and their exact values are listed at the

bottom of the stemplot. Look at the scale on the left of the stemplot and try to imagine how

ridiculous the graph would have looked had we tried to include enough stems to include these

other eight observations; the stemplot would have stretched over several pages. Notice finally

that we can use the depths to approximate the sample median for these data. The median lies in

the row identified by (18), which means that the median is the average of the ninth and tenth

observation on that row. Those two values correspond to 43 and 43, so a good guess for the

median would be 430. (For the record, the sample median is x̃ = 425. Recall that stemplots

round the data to the nearest stem-leaf pair.)

Next let us see what the precip data look like.

> stem.leaf(precip)

1 | 2: represents 12

leaf unit: 1

n: 70

LO: 7 7.2 7.8 7.8

8 1* | 1344

13 1. | 55677

16 2* | 024

18 2. | 59

28 3* | 0000111234

(15) 3. | 555566677788899

27 4* | 0000122222334

14 4. | 56688899

6 5* | 44

4 5. | 699

HI: 67
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Here is an example of split stems, with two lines per stem. The final digit of each datum

has been dropped for the display. The data appear to be left skewed with four extreme values

to the left and one extreme value to the right. The sample median is approximately 37 (it turns

out to be 36.6).

3.4.3 Hinges and the Five Number Summary

Given a data set x1, x2, . . . , xn, the hinges are found by the following method:

• Find the order statistics x(1), x(2), . . . , x(n).

• The lower hinge hL is in position L = ⌊(n + 3)/2⌋ /2, where the symbol ⌊x⌋ denotes the
largest integer less than or equal to x. If the position L is not an integer, then the hinge

hL is the average of the adjacent order statistics.

• The upper hinge hU is in position n + 1 − L.

Given the hinges, the five number summary (5NS ) is

5NS = (x(1), hL, x̃, hU , x(n)). (3.4.1)

An advantage of the 5NS is that it reduces a potentially large data set to a shorter list of only five

numbers, and further, these numbers give insight regarding the shape of the data distribution

similar to the sample quantiles in Section 3.3.4.

3.4.4 How to do it with R

If the data are stored in a vector x, then you can compute the 5NS with the fivenum function.

3.4.5 Boxplots

A boxplot is essentially a graphical representation of the 5NS . It can be a handy alternative to

a stripchart when the sample size is large.

A boxplot is constructed by drawing a box alongside the data axis with sides located at

the upper and lower hinges. A line is drawn parallel to the sides to denote the sample me-

dian. Lastly, whiskers are extended from the sides of the box to the maximum and minimum

data values (more precisely, to the most extreme values that are not potential outliers, defined

below).

Boxplots are good for quick visual summaries of data sets, and the relative positions of the

values in the 5NS are good at indicating the underlying shape of the data distribution, although

perhaps not as effectively as a histogram. Perhaps the greatest advantage of a boxplot is that

it can help to objectively identify extreme observations in the data set as described in the next

section.

Boxplots are also good because one can visually assess multiple features of the data set

simultaneously:

Center can be estimated by the sample median, x̃.

Spread can be judged by the width of the box, hU − hL. We know that this will be close to the

IQR, which can be compared to s and the MAD, perhaps after rescaling if appropriate.
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Shape is indicated by the relative lengths of the whiskers, and the position of the median inside

the box. Boxes with unbalanced whiskers indicate skewness in the direction of the long

whisker. Skewed distributions often have the median tending in the opposite direction of

skewness. Kurtosis can be assessed using the box and whiskers. A wide box with short

whiskers will tend to be platykurtic, while a skinny box with wide whiskers indicates

leptokurtic distributions.

Extreme observations are identified with open circles (see below).

3.4.6 Outliers

A potential outlier is any observation that falls beyond 1.5 times the width of the box on either

side, that is, any observation less than hL − 1.5(hU − hL) or greater than hU + 1.5(hU − hL). A

suspected outlier is any observation that falls beyond 3 times the width of the box on either

side. In R, both potential and suspected outliers (if present) are denoted by open circles; there

is no distinction between the two.

When potential outliers are present, the whiskers of the boxplot are then shortened to extend

to the most extreme observation that is not a potential outlier. If an outlier is displayed in

a boxplot, the index of the observation may be identified in a subsequent plot in Rcmdr by

clicking the Identify outliers with mouse option in the Boxplot dialog.

What do we do about outliers? They merit further investigation. The primary goal is to

determine why the observation is outlying, if possible. If the observation is a typographical

error, then it should be corrected before continuing. If the observation is from a subject that does

not belong to the population of interest, then perhaps the datum should be removed. Otherwise,

perhaps the value is hinting at some hidden structure to the data.

3.4.7 How to do it with R

The quickest way to visually identify outliers is with a boxplot, described above. Another way

is with the boxplot.stats function.

Example 3.15. The rivers data. We will look for potential outliers in the rivers data.

> boxplot.stats(rivers)$out

[1] 1459 1450 1243 2348 3710 2315 2533 1306 1270 1885 1770

We may change the coef argument to 3 (it is 1.5 by default) to identify suspected outliers.

> boxplot.stats(rivers, coef = 3)$out

[1] 2348 3710 2315 2533 1885

3.4.8 Standardizing variables

It is sometimes useful to compare data sets with each other on a scale that is independent of the

measurement units. Given a set of observed data x1, x2, . . . , xn we get z scores, denoted z1, z2,

. . . , zn, by means of the following formula

zi =
xi − x

s
, i = 1, 2, . . . , n.
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3.4.9 How to do it with R

The scale function will rescale a numeric vector (or data frame) by subtracting the sample

mean from each value (column) and/or by dividing each observation by the sample standard

deviation.

3.5 Multivariate Data and Data Frames

We have had experience with vectors of data, which are long lists of numbers. Typically, each

entry in the vector is a single measurement on a subject or experimental unit in the study. We

saw in Section 2.3.3 how to form vectors with the c function or the scan function.

However, statistical studies often involve experiments where there are two (or more) mea-

surements associated with each subject. We display the measured information in a rectangular

array in which each row corresponds to a subject, and the columns contain the measurements

for each respective variable. For instance, if one were to measure the height and weight and

hair color of each of 11 persons in a research study, the information could be represented with

a rectangular array. There would be 11 rows. Each row would have the person’s height in the

first column and hair color in the second column.

The corresponding objects in R are called data frames, and they can be constructed with

the data.frame function. Each row is an observation, and each column is a variable.

Example 3.16. Suppose we have two vectors x and y and we want to make a data frame out of

them.

> x <- 5:8

> y <- letters[3:6]

> A <- data.frame(v1 = x, v2 = y)

Notice that x and y are the same length. This is necessary. Also notice that x is a numeric

vector and y is a character vector. We may choose numeric and character vectors (or even

factors) for the columns of the data frame, but each column must be of exactly one type. That

is, we can have a column for height and a column for gender, but we will get an error if we

try to mix function height (numeric) and gender (character or factor) information in the same

column.

Indexing of data frames is similar to indexing of vectors. To get the entry in row i and

column j do A[i,j]. We can get entire rows and columns by omitting the other index.

> A[3, ]

v1 v2

3 7 e

> A[1, ]

v1 v2

1 5 c

> A[, 2]

[1] c d e f

Levels: c d e f
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There are several things happening above. Notice that A[3,] gave a data frame (with the

same entries as the third row of A) yet A[1, ] is a numeric vector. A[ ,2] is a factor vector

because the default setting for data.frame is stringsAsFactors = TRUE.

Data frames have a names attribute and the names may be extracted with the names func-

tion. Once we have the names we may extract given columns by way of the dollar sign.

> names(A)

[1] "v1" "v2"

> A$v1

[1] 5 6 7 8

The above is identical to A[ ,1].

3.5.1 Bivariate Data

• Introduce the sample correlation coefficient.

• Two-Way Tables. Done with table, or in the R Commander by following Statistics ⊲

Contingency Tables ⊲ Two-way Tables. You can also enter and analyze a two-way table.

• Scatterplot: look for linear association and correlation.

◦ carb ~ optden, data = Formaldehyde

◦ conc ~ rate, data = Puromycin

◦ xyplot(accel ~ dist, data = attenu) nonlinear association

◦ xyplot(eruptions ~ waiting, data = faithful) (linear, two groups)

◦ xyplot(Petal.Width ~ Petal.Length, data = iris)

◦ xyplot(pressure ~ temperature, data = pressure) (exponential growth)

◦ xyplot(weight ~ height, data = women) (strong positive linear)

3.5.2 Multivariate Data

Multivariate Data Display

• Multi-Way Tables. You can do this with table, or in R Commander by following Statis-

tics ⊲ Contingency Tables ⊲ Multi-way Tables.

• Scatterplot matrix. used for displaying pairwise scatterplots simultaneously. Again, look

for linear association and correlation.

• 3D Scatterplot. See Figure 270

• plot(state.region, state.division)

• barplot(table(state.division,state.region), legend.text=TRUE)
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3.6 Comparing Populations

Sometimes we have data from two or more groups (or populations) and we would like to com-

pare them and draw conclusions. What we should imagine is

Some issues that we would like to address:

• Comparing centers and spreads: variation within versus between groups

• Comparing clusters and gaps

• Comparing outliers and unusual features

• Comparing shapes.

3.6.1 Numerically

I am thinking here about theStatistics ⊲Numerical Summaries ⊲ Summarize by groups option

or the Statistics ⊲ Summaries ⊲Table of Statistics option.

3.6.2 Graphically

• Boxplots

◦ Variable width: the width of the drawn boxplots are proportional to
√
ni, where ni is

the size of the ith group. Why? Because many statistics have variability proportional

to the reciprocal of the square root of the sample size.

◦ Notches: extend to 1.58·(hU−hL)/
√
n. The idea is to give roughly a 95% confidence

interval for the difference in two medians. See Chapter 10.

• Stripcharts

• Bar Graphs

◦ plot(xtabs(Freq ~ Admit + Gender, data = UCBAdmissions)) # rescaled barplot

◦ barplot(xtabs(Freq ~ Admit +Gender, data = UCBAdmissions)) # stacked bar chart

◦ barplot(xtabs(Freq ~ Admit, data = UCBAdmissions))

◦ barplot(xtabs(Freq ~ Gender + Admit, data = UCBAdmissions), legend = TRUE,

beside = TRUE) # oops, discrimination.

◦ barplot(xtabs(Freq ~ Admit+Dept, data = UCBAdmissions), legend = TRUE, be-

side = TRUE) # different departments have different standards

◦ barplot(xtabs(Freq ~ Gender+Dept, data = UCBAdmissions), legend = TRUE, be-

side = TRUE) # men mostly applied to easy departments, women mostly applied to

difficult departments

◦ barplot(xtabs(Freq ~ Gender+Dept, data = UCBAdmissions), legend = TRUE, be-

side = TRUE)

◦ barchart(Admit ~ Freq, data = C)

◦ barchart(Admit ~ Freq|Gender, data = C)
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◦ barchart(Admit ~ Freq | Dept, groups = Gender, data = C)

◦ barchart(Admit ~ Freq | Dept, groups = Gender, data = C, auto.key = TRUE)

• Histograms

◦ ~ breaks | wool*tension, data = warpbreaks

◦ ~ weight | feed, data = chickwts

◦ ~ weight | group, data = PlantGrowth

◦ ~ count | spray, data = InsectSprays

◦ ~ len | dose, data = ToothGrowth

◦ ~ decrease | treatment, data = OrchardSprays (or rowpos or colpos)

• Scatterplots

◦ xyplot(Petal.Width ~ Petal.Length, data = iris, group = Species)

> library(lattice)

> xyplot()

• Scatterplot matrices

◦ splom(~ cbind(GNP.deflator,GNP,Unemployed,Armed.Forces,Population,Year,Employed),

data = longley)

◦ splom(~ cbind(pop15,pop75,dpi), data = LifeCycleSavings)

◦ splom(~ cbind(Murder, Assault, Rape), data = USArrests)

◦ splom(~ cbind(CONT, INTG, DMNR), data = USJudgeRatings)

◦ splom(~ cbind(area,peri,shape,perm), data = rock)

◦ splom(~ cbind(Air.Flow, Water.Temp, Acid.Conc., stack.loss), data = stackloss)

◦ splom(~ cbind(Fertility,Agriculture,Examination,Education,Catholic,Infant.Mortality),

data = swiss)

◦ splom(~ cbind(Fertility,Agriculture,Examination), data = swiss) (positive and neg-

ative)

• Dot charts

◦ dotchart(USPersonalExpenditure)

◦ dotchart(t(USPersonalExpenditure))

◦ dotchart(WorldPhones) (transpose is no good)

◦ freeny.x is no good, neither is volcano

◦ dotchart(UCBAdmissions[„1])

◦ dotplot(Survived ~ Freq | Class, groups = Sex, data = B)

◦ dotplot(Admit ~ Freq | Dept, groups = Gender, data = C)
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• Mosaic plot

◦ mosaic(~ Survived + Class + Age + Sex, data = Titanic) (or just mosaic(Titanic))

◦ mosaic(~ Admit + Dept + Gender, data = UCBAdmissions)

• Quantile-quantile plots: There are two ways to do this. One way is to compare two

independent samples (of the same size). qqplot(x,y). Another way is to compare the

sample quantiles of one variable to the theoretical quantiles of another distribution.

Given two samples {x1, x2, . . . , xn} and {y1, y2, . . . , yn}, we may find the order statistics x(1) ≤
x(2) ≤ · · · ≤ x(n) and y(1) ≤ y(2) ≤ · · · ≤ y(n). Next, plot the n points (x(1), y(1)), (x(2), y(2))

,. . . ,(x(n), y(n)).

It is clear that if x(k) = y(k) for all k = 1, 2, . . . , n, then we will have a straight line. It is also

clear that in the real world, a straight line is NEVER observed, and instead we have a scatterplot

that hopefully had a general linear trend. What do the rules tell us?

• If the y-intercept of the line is greater (less) than zero, then the center of the Y data is

greater (less) than the center of the X data.

• If the slope of the line is greater (less) than one, then the spread of the Y data is greater

(less) than the spread of the X data..

3.6.3 Lattice Graphics

The following types of plots are useful when there is one variable of interest and there is a

factor in the data set by which the variable is categorized.

It is sometimes nice to set lattice.options(default.theme = "col.whitebg")

Side by side boxplots

> library(lattice)

> bwplot(~weight | feed, data = chickwts)
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Figure 3.6.1: Boxplots of weight by feed type in the chickwts data

Histograms

> histogram(~age | education, data = infert)
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Figure 3.6.2: Histograms of age by education level from the infert data
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Scatterplots

> xyplot(Petal.Length ~ Petal.Width | Species, data = iris)
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Figure 3.6.3: An xyplot of Petal.Length versus Petal.Width by Species in the iris

data

Coplots

> coplot(conc ~ uptake | Type * Treatment, data = CO2)
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Figure 3.6.4: A coplot of conc versus uptake by Type and Treatment in the CO2 data
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Chapter Exercises

Directions: Open R and issue the following commands at the command line to get started.

Note that you need to have the RcmdrPlugin.IPSUR package installed, and for some exercises

you need the e1071 package.

library(RcmdrPlugin.IPSUR)

data(RcmdrTestDrive)

attach(RcmdrTestDrive)

names(RcmdrTestDrive) # shows names of variables

To load the data in the R Commander (Rcmdr), click the Data Set button, and select

RcmdrTestDrive as the active data set. To learn more about the data set and where it comes

from, type ?RcmdrTestDrive at the command line.

Exercise 3.1. Perform a summary of all variables in RcmdrTestDrive. You can do this with

the command

summary(RcmdrTestDrive)

Alternatively, you can do this in the Rcmdr with the sequence Statistics ⊲ Summaries ⊲

Active Data Set. Report the values of the summary statistics for each variable.

Answer:

> summary(RcmdrTestDrive)

order race smoke gender salary

Min. : 1.00 AfAmer: 18 No :134 Female:95 Min. :11.62

1st Qu.: 42.75 Asian : 8 Yes: 34 Male :73 1st Qu.:15.93

Median : 84.50 Other : 16 Median :17.59

Mean : 84.50 White :126 Mean :17.10

3rd Qu.:126.25 3rd Qu.:18.46

Max. :168.00 Max. :21.19

reduction before after parking

Min. :4.904 Min. :51.17 Min. :48.79 Min. : 1.000

1st Qu.:5.195 1st Qu.:63.36 1st Qu.:62.80 1st Qu.: 1.000

Median :5.501 Median :67.62 Median :66.94 Median : 2.000

Mean :5.609 Mean :67.36 Mean :66.85 Mean : 2.524

3rd Qu.:5.989 3rd Qu.:71.28 3rd Qu.:70.88 3rd Qu.: 3.000

Max. :6.830 Max. :89.96 Max. :89.89 Max. :18.000

Exercise 3.2. Make a table of the race variable. Do this with Statistics ⊲ Summaries ⊲ IPSUR

- Frequency Distributions...

1. Which ethnicity has the highest frequency?

2. Which ethnicity has the lowest frequency?

3. Include a bar graph of race. Do this with Graphs ⊲ IPSUR - Bar Graph...



54 CHAPTER 3. DATA DESCRIPTION

Solution: First we will make a table of the race variable with the table function.

> table(race)

race

AfAmer Asian Other White

18 8 16 126

1. For these data, White has the highest frequency.

2. For these data, Asian has the lowest frequency.

3. The graph is shown below.

AfAmer Asian Other White

race

F
re

q
u
e
n
c
y

0
2
0

4
0

6
0

8
0

1
2
0

Exercise 3.3. Calculate the average salary by the factor gender. Do this with Statistics ⊲

Summaries ⊲ Table of Statistics...

1. Which gender has the highest mean salary?

2. Report the highest mean salary.

3. Compare the spreads for the genders by calculating the standard deviation of salary by

gender. Which gender has the biggest standard deviation?

4. Make boxplots of salary by gender with the following method:

On the Rcmdr, click Graphs ⊲ IPSUR - Boxplot...

In the Variable box, select salary.

Click the Plot by groups... box and select gender. Click OK.

Click OK to graph the boxplot.

How does the boxplot compare to your answers to (1) and (3)?
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Solution: We can generate a table listing the average salaries by gender with two methods.

The first uses tapply:

> x <- tapply(salary, list(gender = gender), mean)

> x

gender

Female Male

16.46353 17.93035

The second method uses the by function:

> by(salary, gender, mean, na.rm = TRUE)

gender: Female

[1] 16.46353

--------------------------------------------------------

gender: Male

[1] 17.93035

Now to answer the questions:

1. Which gender has the highest mean salary?

We can answer this by looking above. For these data, the gender with the highest mean

salary is Male.

2. Report the highest mean salary.

Depending on our answer above, we would do something like

mean(salary[gender == Male])

for example. For these data, the highest mean salary is

> x[which(x == max(x))]

Male

17.93035

3. Compare the spreads for the genders by calculating the standard deviation of salary by

gender. Which gender has the biggest standard deviation?

> y <- tapply(salary, list(gender = gender), sd)

> y

gender

Female Male

2.122113 1.077183

For these data, the the largest standard deviation is approximately 2.12 which was at-

tained by the Female gender.
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4. Make boxplots of salary by gender. How does the boxplot compare to your answers to

(1) and (3)?

The graph is shown below.
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Answers will vary. There should be some remarks that the center of the box is farther to

the right for the Male gender, and some recognition that the box is wider for the Female

gender.

Exercise 3.4. For this problem we will study the variable reduction.

1. Find the order statistics and store them in a vector x. Hint: x <-sort(reduction)

2. Find x(137), the 137
th order statistic.

3. Find the IQR.

4. Find the Five Number Summary (5NS).

5. Use the 5NS to calculate what the width of a boxplot of reduction would be.

6. Compare your answers (3) and (5). Are they the same? If not, are they close?

7. Make a boxplot of reduction, and include the boxplot in your report. You can do this

with the boxplot function, or in Rcmdr with Graphs ⊲ IPSUR - Boxplot...

8. Are there any potential/suspected outliers? If so, list their values. Hint: use your answer

to (a).
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9. Using the rules discussed in the text, classify answers to (8), if any, as potential or sus-

pected outliers.

Answers:

> x[137]

[1] 6.101618

> IQR(x)

[1] 0.7943932

> fivenum(x)

[1] 4.903922 5.193638 5.501241 5.989846 6.830096

> fivenum(x)[4] - fivenum(x)[2]

[1] 0.796208

Compare your answers (3) and (5). Are they the same? If not, are they close?

Yes, they are close, within 0.00181484542950905 of each other.

The boxplot of reduction is below.

5.0 5.5 6.0 6.5

reduction

> temp <- fivenum(x)

> inF <- 1.5 * (temp[4] - temp[2]) + temp[4]

> outF <- 3 * (temp[4] - temp[2]) + temp[4]

> which(x > inF)

integer(0)

> which(x > outF)
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integer(0)

Observations would be considered potential outliers, while observation(s) would be consid-

ered a suspected outlier.

Exercise 3.5. In this problem we will compare the variables before and after. Don’t forget

library(e1071).

1. Examine the two measures of center for both variables. Judging from these measures,

which variable has a higher center?

2. Which measure of center is more appropriate for before? (You may want to look at a

boxplot.) Which measure of center is more appropriate for after?

3. Based on your answer to (2), choose an appropriate measure of spread for each variable,

calculate it, and report its value. Which variable has the biggest spread? (Note that you

need to make sure that your measures are on the same scale.)

4. Calculate and report the skewness and kurtosis for before. Based on these values, how

would you describe the shape of before?

5. Calculate and report the skewness and kurtosis for after. Based on these values, how

would you describe the shape of after?

6. Plot histograms of before and after and compare them to your answers to (4) and (5).

Solution:

1. Examine the two measures of center for both variables that you found in problem 1.

Judging from these measures, which variable has a higher center?

We may take a look at the summary(RcmdrTestDrive) output from Exercise 3.1. Here

we will repeat the relevant summary statistics.

> c(mean(before), median(before))

[1] 67.36338 67.61824

> c(mean(after), median(after))

[1] 66.85215 66.93608

The idea is to look at the two measures and compare them to make a decision. In a nice

world, both the mean and median of one variable will be larger than the other which sends

a nice message. If We get a mixed message, then we should look for other information,

such as extreme values in one of the variables, which is one of the reasons for the next

part of the problem.

2. Which measure of center is more appropriate for before? (You may want to look at a

boxplot.) Which measure of center is more appropriate for after?

The boxplot of before is shown below.
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50 60 70 80 90

before

We want to watch out for extreme values (shown as circles separated from the box) or

large departures from symmetry. If the distribution is fairly symmetric then the mean

and median should be approximately the same. But if the distribution is highly skewed

with extreme values then we should be skeptical of the sample mean, and fall back to the

median which is resistant to extremes. By design, the before variable is set up to have a

fairly symmetric distribution.

A boxplot of after is shown next.
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50 60 70 80 90

after

The same remarks apply to the after variable. The after variable has been designed to be

left-skewed. . . thus, the median would likely be a good choice for this variable.

3. Based on your answer to (2), choose an appropriate measure of spread for each variable,

calculate it, and report its value. Which variable has the biggest spread? (Note that you

need to make sure that your measures are on the same scale.)

Since before has a symmetric, mound shaped distribution, an excellent measure of center

would be the sample standard deviation. And since after is left-skewed, we should use

the median absolute deviation. It is also acceptable to use the IQR, but we should rescale

it appropriately, namely, by dividing by 1.349. The exact values are shown below.

> sd(before)

[1] 6.201724

> mad(after)

[1] 6.095189

> IQR(after)/1.349

[1] 5.986954

Judging from the values above, we would decide which variable has the higher spread.

Look at how close the mad and the IQR (after suitable rescaling) are; it goes to show why

the rescaling is important.
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4. Calculate and report the skewness and kurtosis for before. Based on these values, how

would you describe the shape of before?

The values of these descriptive measures are shown below.

> library(e1071)

> skewness(before)

[1] 0.4016912

> kurtosis(before)

[1] 1.542225

We should take the sample skewness value and compare it to 2
√
6/n ≈0.378 in absolute

value to see if it is substantially different from zero. The direction of skewness is decided

by the sign (positive or negative) of the skewness value.

We should take the sample kurtosis value and compare it to 2 ·
√
24/168 ≈0.756), in

absolute value to see if the excess kurtosis is substantially different from zero. And take

a look at the sign to see whether the distribution is platykurtic or leptokurtic.

5. Calculate and report the skewness and kurtosis for after. Based on these values, how

would you describe the shape of after?

The values of these descriptive measures are shown below.

> skewness(after)

[1] 0.3235134

> kurtosis(after)

[1] 1.452301

We should do for this one just like we did previously. We would again compare the

sample skewness and kurtosis values (in absolute value) to 0.378 and 0.756, respectively.

6. Plot histograms of before and after and compare them to your answers to (4) and (5).

The graphs are shown below.
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Answers will vary. We are looking for visual consistency in the histograms to our state-

ments above.

Exercise 3.6. Describe the following data sets just as if you were communicating with an

alien, but one who has had a statistics class. Mention the salient features (data type, important

properties, anything special). Support your answers with the appropriate visual displays and

descriptive statistics.

1. Conversion rates of Euro currencies stored in euro.

2. State abbreviations stored in state.abb.
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Chapter 4

Probability

In this chapter we define the basic terminology associated with probability and derive some

of its properties. We discuss three interpretations of probability. We discuss conditional prob-

ability and independent events, along with Bayes’ Theorem. We finish the chapter with an

introduction to random variables, which paves the way for the next two chapters.

In this book we distinguish between two types of experiments: deterministic and random.

A deterministic experiment is one whose outcome may be predicted with certainty beforehand,

such as combining Hydrogen and Oxygen, or adding two numbers such as 2 + 3. A random

experiment is one whose outcome is determined by chance. We posit that the outcome of a ran-

dom experiment may not be predicted with certainty beforehand, even in principle. Examples

of random experiments include tossing a coin, rolling a die, and throwing a dart on a board,

how many red lights you encounter on the drive home, how many ants traverse a certain patch

of sidewalk over a short period, etc.

What do I want them to know?

• that there are multiple interpretations of probability, and the methods used depend some-

what on the philosophy chosen

• nuts and bolts of basic probability jargon: sample spaces, events, probability functions,

etc.

• how to count

• conditional probability and its relationship with independence

• Bayes’ Rule and how it relates to the subjective view of probability

• what we mean by ’random variables’, and where they come from

4.1 Sample Spaces

For a random experiment E, the set of all possible outcomes of E is called the sample space

and is denoted by the letter S . For the coin-toss experiment, S would be the results “Head”

and “Tail”, which we may represent by S = {H, T }. Formally, the performance of a random

experiment is the unpredictable selection of an outcome in S .

65
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4.1.1 How to do it with R

Most of the probability work in this book is done with the prob package [52]. A sample space is

(usually) represented by a data frame, that is, a rectangular collection of variables (see Section

3.5.2). Each row of the data frame corresponds to an outcome of the experiment. The data frame

choice is convenient both for its simplicity and its compatibility with the R Commander. Data

frames alone are, however, not sufficient to describe some of the more interesting probabilistic

applications we will study later; to handle those we will need to consider a more general list

data structure. See Section 4.6.3 for details.

Example 4.1. Consider the random experiment of dropping a Styrofoam cup onto the floor

from a height of four feet. The cup hits the ground and eventually comes to rest. It could land

upside down, right side up, or it could land on its side. We represent these possible outcomes

of the random experiment by the following.

> S <- data.frame(lands = c("down", "up", "side"))

> S

lands

1 down

2 up

3 side

The sample space S contains the column lands which stores the outcomes "down", "up",

and "side".

Some sample spaces are so common that convenience wrappers were written to set them up

with minimal effort. The underlying machinery that does the work includes the expand.grid

function in the base package, combn in the combinat package [14], and permsn in the prob

package1.

Consider the random experiment of tossing a coin. The outcomes are H and T . We can set

up the sample space quickly with the tosscoin function:

> library(prob)

> tosscoin(1)

toss1

1 H

2 T

The number 1 tells tosscoin that we only want to toss the coin once. We could toss it

three times:

> tosscoin(3)

toss1 toss2 toss3

1 H H H

2 T H H

3 H T H

1The seasoned R user can get the job done without the convenience wrappers. I encourage the beginner to use

them to get started, but I also recommend that introductory students wean themselves as soon as possible. The

wrappers were designed for ease and intuitive use, not for speed or efficiency.
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4 T T H

5 H H T

6 T H T

7 H T T

8 T T T

Alternatively we could roll a fair die:

> rolldie(1)

X1

1 1

2 2

3 3

4 4

5 5

6 6

The rolldie function defaults to a 6-sided die, but we can specify others with the nsides

argument. The command rolldie(3, nsides = 4)would be used to roll a 4-sided die three

times.

Perhaps we would like to draw one card from a standard set of playing cards (it is a long

data frame):

> head(cards())

rank suit

1 2 Club

2 3 Club

3 4 Club

4 5 Club

5 6 Club

6 7 Club

The cards function that we just used has optional arguments jokers (if you would like

Jokers to be in the deck) and makespace which we will discuss later. There is also a roulette

function which returns the sample space associated with one spin on a roulette wheel. There are

EU and USA versions available. Interested readers may contribute any other game or sample

spaces that may be of general interest.

4.1.2 Sampling from Urns

This is perhaps the most fundamental type of random experiment. We have an urn that contains

a bunch of distinguishable objects (balls) inside. We shake up the urn, reach inside, grab a ball,

and take a look. That’s all.

But there are all sorts of variations on this theme. Maybe we would like to grab more than

one ball – say, two balls. What are all of the possible outcomes of the experiment now? It

depends on how we sample. We could select a ball, take a look, put it back, and sample again.

Another way would be to select a ball, take a look – but do not put it back – and sample again

(equivalently, just reach in and grab two balls). There are certainly more possible outcomes
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of the experiment in the former case than in the latter. In the first (second) case we say that

sampling is done with (without) replacement.

There is more. Suppose we do not actually keep track of which ball came first. All we

observe are the two balls, and we have no idea about the order in which they were selected. We

call this unordered sampling (in contrast to ordered) because the order of the selections does

not matter with respect to what we observe. We might as well have selected the balls and put

them in a bag before looking.

Note that this one general class of random experiments contains as a special case all of the

common elementary random experiments. Tossing a coin twice is equivalent to selecting two

balls labeled H and T from an urn, with replacement. The die-roll experiment is equivalent to

selecting a ball from an urn with six elements, labeled 1 through 6.

4.1.3 How to do it with R

The prob package accomplishes sampling from urns with the urnsamples function, which has

arguments x, size, replace, and ordered. The argument x represents the urn from which

sampling is to be done. The size argument tells how large the sample will be. The ordered

and replace arguments are logical and specify how sampling will be performed. We will

discuss each in turn.

Example 4.2. Let our urn simply contain three balls, labeled 1, 2, and 3, respectively. We are

going to take a sample of size 2 from the urn.

Ordered, With Replacement

If sampling is with replacement, then we can get any outcome 1, 2, or 3 on any draw. Further,

by “ordered” we mean that we shall keep track of the order of the draws that we observe. We

can accomplish this in R with

> urnsamples(1:3, size = 2, replace = TRUE, ordered = TRUE)

X1 X2

1 1 1

2 2 1

3 3 1

4 1 2

5 2 2

6 3 2

7 1 3

8 2 3

9 3 3

Notice that rows 2 and 4 are identical, save for the order in which the numbers are shown.

Further, note that every possible pair of the numbers 1 through 3 are listed. This experi-

ment is equivalent to rolling a 3-sided die twice, which we could have accomplished with

rolldie(2, nsides = 3).
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Ordered, Without Replacement

Here sampling is without replacement, so we may not observe the same number twice in any

row. Order is still important, however, so we expect to see the outcomes 1,2 and 2,1 some-

where in our data frame.

> urnsamples(1:3, size = 2, replace = FALSE, ordered = TRUE)

X1 X2

1 1 2

2 2 1

3 1 3

4 3 1

5 2 3

6 3 2

This is just as we expected. Notice that there are less rows in this answer due to the more

restrictive sampling procedure. If the numbers 1, 2, and 3 represented “Fred”, “Mary”, and

“Sue”, respectively, then this experiment would be equivalent to selecting two people of the

three to serve as president and vice-president of a company, respectively, and the sample space

shown above lists all possible ways that this could be done.

Unordered, Without Replacement

Again, we may not observe the same outcome twice, but in this case, we will only retain those

outcomes which (when jumbled) would not duplicate earlier ones.

> urnsamples(1:3, size = 2, replace = FALSE, ordered = FALSE)

X1 X2

1 1 2

2 1 3

3 2 3

This experiment is equivalent to reaching in the urn, picking a pair, and looking to see what

they are. This is the default setting of urnsamples, so we would have received the same output

by simply typing urnsamples(1:3, 2).

Unordered, With Replacement

The last possibility is perhaps the most interesting. We replace the balls after every draw, but

we do not remember the order in which the draws came.

> urnsamples(1:3, size = 2, replace = TRUE, ordered = FALSE)

X1 X2

1 1 1

2 1 2

3 1 3

4 2 2

5 2 3

6 3 3
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We may interpret this experiment in a number of alternative ways. One way is to consider

this as simply putting two 3-sided dice in a cup, shaking the cup, and looking inside – as in a

game of Liar’s Dice, for instance. Each row of the sample space is a potential pair we could

observe. Another way is to view each outcome as a separate method to distribute two identical

golf balls into three boxes labeled 1, 2, and 3. Regardless of the interpretation, urnsamples

lists every possible way that the experiment can conclude.

Note that the urn does not need to contain numbers; we could have just as easily taken

our urn to be x = c("Red","Blue","Green"). But, there is an important point to mention

before proceeding. Astute readers will notice that in our example, the balls in the urn were

distinguishable in the sense that each had a unique label to distinguish it from the others in the

urn. A natural question would be, “What happens if your urn has indistinguishable elements, for

example, what if x = c("Red","Red","Blue")?” The answer is that urnsamples behaves

as if each ball in the urn is distinguishable, regardless of its actual contents. We may thus

imagine that while there are two red balls in the urn, the balls are such that we can tell them

apart (in principle) by looking closely enough at the imperfections on their surface.

In this way, when the x argument of urnsamples has repeated elements, the resulting sam-

ple space may appear to be ordered = TRUE even when, in fact, the call to the function was

urnsamples(..., ordered = FALSE). Similar remarks apply for the replace argument.

4.2 Events

An event A is merely a collection of outcomes, or in other words, a subset of the sample

space2. After the performance of a random experiment E we say that the event A occurred

if the experiment’s outcome belongs to A. We say that a bunch of events A1, A2, A3, . . . are

mutually exclusive or disjoint if Ai ∩ A j = ∅ for any distinct pair Ai , A j. For instance, in

the coin-toss experiment the events A = {Heads} and B = {Tails} would be mutually exclusive.

Now would be a good time to review the algebra of sets in Appendix E.1.

4.2.1 How to do it with R

Given a data frame sample/probability space S, we may extract rows using the [] operator:

> S <- tosscoin(2, makespace = TRUE)

toss1 toss2 probs

1 H H 0.25

2 T H 0.25

3 H T 0.25

4 T T 0.25

> S[1:3, ]

toss1 toss2 probs

1 H H 0.25

2 T H 0.25

3 H T 0.25

2This naive definition works for finite or countably infinite sample spaces, but is inadequate for sample spaces

in general. In this book, we will not address the subtleties that arise, but will refer the interested reader to any text

on advanced probability or measure theory.
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> S[c(2, 4), ]

toss1 toss2 probs

2 T H 0.25

4 T T 0.25

and so forth. We may also extract rows that satisfy a logical expression using the subset

function, for instance

> S <- cards()

> subset(S, suit == "Heart")

rank suit

27 2 Heart

28 3 Heart

29 4 Heart

30 5 Heart

31 6 Heart

32 7 Heart

33 8 Heart

34 9 Heart

35 10 Heart

36 J Heart

37 Q Heart

38 K Heart

39 A Heart

> subset(S, rank %in% 7:9)

rank suit

6 7 Club

7 8 Club

8 9 Club

19 7 Diamond

20 8 Diamond

21 9 Diamond

32 7 Heart

33 8 Heart

34 9 Heart

45 7 Spade

46 8 Spade

47 9 Spade

We could continue indefinitely. Also note that mathematical expressions are allowed:

> subset(rolldie(3), X1 + X2 + X3 > 16)

X1 X2 X3

180 6 6 5

210 6 5 6

215 5 6 6

216 6 6 6
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4.2.2 Functions for Finding Subsets

It does not take long before the subsets of interest become complicated to specify. Yet the main

idea remains: we have a particular logical condition to apply to each row. If the row satisfies

the condition, then it should be in the subset. It should not be in the subset otherwise. The ease

with which the condition may be coded depends of course on the question being asked. Here

are a few functions to get started.

The %in% function

The function %in% helps to learn whether each value of one vector lies somewhere inside an-

other vector.

> x <- 1:10

> y <- 8:12

> y %in% x

[1] TRUE TRUE TRUE FALSE FALSE

Notice that the returned value is a vector of length 5 which tests whether each element of y

is in x, in turn.

The isin function

It is more common to want to know whether the whole vector y is in x. We can do this with the

isin function.

> isin(x, y)

[1] FALSE

Of course, one may ask why we did not try something like all(y %in% x), which would

give a single result, TRUE. The reason is that the answers are different in the case that y has

repeated values. Compare:

> x <- 1:10

> y <- c(3, 3, 7)

> all(y %in% x)

[1] TRUE

> isin(x, y)

[1] FALSE

The reason for the above is of course that x contains the value 3, but x does not have two

3’s. The difference is important when rolling multiple dice, playing cards, etc. Note that there

is an optional argument ordered which tests whether the elements of y appear in x in the order

in which they are appear in y. The consequences are

> isin(x, c(3, 4, 5), ordered = TRUE)
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[1] TRUE

> isin(x, c(3, 5, 4), ordered = TRUE)

[1] FALSE

The connection to probability is that have a data frame sample space and we would like to

find a subset of that space. A data.frame method was written for isin that simply applies

the function to each row of the data frame. We can see the method in action with the following:

> S <- rolldie(4)

> subset(S, isin(S, c(2, 2, 6), ordered = TRUE))

X1 X2 X3 X4

188 2 2 6 1

404 2 2 6 2

620 2 2 6 3

836 2 2 6 4

1052 2 2 6 5

1088 2 2 1 6

1118 2 1 2 6

1123 1 2 2 6

1124 2 2 2 6

1125 3 2 2 6

1126 4 2 2 6

1127 5 2 2 6

1128 6 2 2 6

1130 2 3 2 6

1136 2 4 2 6

1142 2 5 2 6

1148 2 6 2 6

1160 2 2 3 6

1196 2 2 4 6

1232 2 2 5 6

1268 2 2 6 6

There are a few other functions written to find useful subsets, namely, countrep and

isrep. Essentially these were written to test for (or count) a specific number of designated

values in outcomes. See the documentation for details.

4.2.3 Set Union, Intersection, and Difference

Given subsets A and B, it is often useful to manipulate them in an algebraic fashion. To this

end, we have three set operations at our disposal: union, intersection, and difference. Below is

a table that summarizes the pertinent information about these operations.

Name Denoted Defined by elements Code

Union A ∪ B in A or B or both union(A,B)

Intersection A ∩ B in both A and B intersect(A,B)

Difference A\B in A but not in B setdiff(A,B)
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Some examples follow.

> S = cards()

> A = subset(S, suit == "Heart")

> B = subset(S, rank %in% 7:9)

We can now do some set algebra:

> union(A, B)

rank suit

6 7 Club

7 8 Club

8 9 Club

19 7 Diamond

20 8 Diamond

21 9 Diamond

27 2 Heart

28 3 Heart

29 4 Heart

30 5 Heart

31 6 Heart

32 7 Heart

33 8 Heart

34 9 Heart

35 10 Heart

36 J Heart

37 Q Heart

38 K Heart

39 A Heart

45 7 Spade

46 8 Spade

47 9 Spade

> intersect(A, B)

rank suit

32 7 Heart

33 8 Heart

34 9 Heart

> setdiff(A, B)

rank suit

27 2 Heart

28 3 Heart

29 4 Heart

30 5 Heart

31 6 Heart

35 10 Heart

36 J Heart

37 Q Heart

38 K Heart

39 A Heart
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> setdiff(B, A)

rank suit

6 7 Club

7 8 Club

8 9 Club

19 7 Diamond

20 8 Diamond

21 9 Diamond

45 7 Spade

46 8 Spade

47 9 Spade

Notice that setdiff is not symmetric. Further, note that we can calculate the complement

of a set A, denoted Ac and defined to be the elements of S that are not in A simply with

setdiff(S,A).

There have been methods written for intersect, setdiff, subset, and union in the case

that the input objects are of class ps. See Section 4.6.3.

Note 4.3. When the prob package loads you will notice a message: “The following object(s)

are masked from package:base : intersect, setdiff, union”. The reason for this

message is that there already exist methods for the functions intersect, setdiff, subset,

and union in the base package which ships with R. However, these methods were designed for

when the arguments are vectors of the same mode. Since we are manipulating sample spaces

which are data frames and lists, it was necessary to write methods to handle those cases as well.

When the prob package is loaded, R recognizes that there are multiple versions of the same

function in the search path and acts to shield the new definitions from the existing ones. But

there is no cause for alarm, thankfully, because the prob functions have been carefully defined

to match the usual base package definition in the case that the arguments are vectors.

4.3 Model Assignment

Let us take a look at the coin-toss experiment more closely. What do we mean when we say

“the probability of Heads” or write IP(Heads)? Given a coin and an itchy thumb, how do we go

about finding what IP(Heads) should be?

4.3.1 The Measure Theory Approach

This approach states that the way to handle IP(Heads) is to define a mathematical function,

called a probability measure, on the sample space. Probability measures satisfy certain axioms

(to be introduced later) and have special mathematical properties, so not just any mathemat-

ical function will do. But in any given physical circumstance there are typically all sorts of

probability measures from which to choose, and it is left to the experimenter to make a reason-

able choice – usually based on considerations of objectivity. For the tossing coin example, a

valid probability measure assigns probability p to the event {Heads}, where p is some number

0 ≤ p ≤ 1. An experimenter that wishes to incorporate the symmetry of the coin would choose

p = 1/2 to balance the likelihood of {Heads} and {Tails}.
Once the probability measure is chosen (or determined), there is not much left to do. All

assignments of probability are made by the probability function, and the experimenter needs



76 CHAPTER 4. PROBABILITY

only to plug the event {Heads} into to the probability function to find IP(Heads). In this way,

the probability of an event is simply a calculated value, nothing more, nothing less. Of course

this is not the whole story; there are many theorems and consequences associated with this

approach that will keep us occupied for the remainder of this book. The approach is called

measure theory because the measure (probability) of a set (event) is associated with how big it

is (how likely it is to occur).

The measure theory approach is well suited for situations where there is symmetry to the

experiment, such as flipping a balanced coin or spinning an arrow around a circle with well-

defined pie slices. It is also handy because of its mathematical simplicity, elegance, and flexibil-

ity. There are literally volumes of information that one can prove about probability measures,

and the cold rules of mathematics allow us to analyze intricate probabilistic problems with

vigor.

The large degree of flexibility is also a disadvantage, however. When symmetry fails it is

not always obvious what an “objective” choice of probability measure should be; for instance,

what probability should we assign to {Heads} if we spin the coin rather than flip it? (It is

not 1/2.) Furthermore, the mathematical rules are restrictive when we wish to incorporate

subjective knowledge into the model, knowledge which changes over time and depends on

the experimenter, such as personal knowledge about the properties of the specific coin being

flipped, or of the person doing the flipping.

The mathematician who revolutionized this way to do probability theory was Andrey Kol-

mogorov, who published a landmark monograph in 1933. See

http://www-history.mcs.st-andrews.ac.uk/Mathematicians/Kolmogorov.html

for more information.

4.3.2 Relative Frequency Approach

This approach states that the way to determine IP(Heads) is to flip the coin repeatedly, in exactly

the same way each time. Keep a tally of the number of flips and the number of Heads observed.

Then a good approximation to IP(Heads) will be

IP(Heads) ≈ number of observed Heads

total number of flips
. (4.3.1)

The mathematical underpinning of this approach is the celebrated Law of Large Numbers,

which may be loosely described as follows. Let E be a random experiment in which the event

A either does or does not occur. Perform the experiment repeatedly, in an identical manner, in

such a way that the successive experiments do not influence each other. After each experiment,

keep a running tally of whether or not the event A occurred. Let S n count the number of times

that A occurred in the n experiments. Then the law of large numbers says that

S n

n
→ IP(A) as n→ ∞. (4.3.2)

As the reasoning goes, to learn about the probability of an event A we need only repeat the

random experiment to get a reasonable estimate of the probability’s value, and if we are not

satisfied with our estimate then we may simply repeat the experiment more times all the while

confident that with more and more experiments our estimate will stabilize to the true value.

The frequentist approach is good because it is relatively light on assumptions and does not

worry about symmetry or claims of objectivity like the measure-theoretic approach does. It is

http://www-history.mcs.st-andrews.ac.uk/Mathematicians/Kolmogorov.html
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perfect for the spinning coin experiment. One drawback to the method is that one can never

know the exact value of a probability, only a long-run approximation. It also does not work

well with experiments that can not be repeated indefinitely, say, the probability that it will rain

today, the chances that you get will get an A in your Statistics class, or the probability that the

world is destroyed by nuclear war.

This approach was espoused by Richard von Mises in the early twentieth century, and some

of his main ideas were incorporated into the measure theory approach. See

http://www-history.mcs.st-andrews.ac.uk/Biographies/Mises.html

for more.

4.3.3 The Subjective Approach

The subjective approach interprets probability as the experimenter’s degree of belief that the

event will occur. The estimate of the probability of an event is based on the totality of the indi-

vidual’s knowledge at the time. As new information becomes available, the estimate is modified

accordingly to best reflect his/her current knowledge. The method by which the probabilities

are updated is commonly done with Bayes’ Rule, discussed in Section 4.8.

So for the coin toss example, a person may have IP(Heads) = 1/2 in the absence of addi-

tional information. But perhaps the observer knows additional information about the coin or the

thrower that would shift the probability in a certain direction. For instance, parlor magicians

may be trained to be quite skilled at tossing coins, and some are so skilled that they may toss a

fair coin and get nothing but Heads, indefinitely. I have seen this. It was similarly claimed in

Bringing Down the House [65] that MIT students were accomplished enough with cards to be

able to cut a deck to the same location, every single time. In such cases, one clearly should use

the additional information to assign IP(Heads) away from the symmetry value of 1/2.

This approach works well in situations that cannot be repeated indefinitely, for example, to

assign your probability that you will get an A in this class, the chances of a devastating nuclear

war, or the likelihood that a cure for the common cold will be discovered.

The roots of subjective probability reach back a long time. See

http://en.wikipedia.org/wiki/Subjective_probability

for a short discussion and links to references about the subjective approach.

4.3.4 Equally Likely Model (ELM)

We have seen several approaches to the assignment of a probability model to a given random

experiment and they are very different in their underlying interpretation. But they all cross paths

when it comes to the equally likely model which assigns equal probability to all elementary

outcomes of the experiment.

The ELM appears in the measure theory approach when the experiment boasts symmetry

of some kind. If symmetry guarantees that all outcomes have equal “size”, and if outcomes

with equal “size” should get the same probability, then the ELM is a logical objective choice

for the experimenter. Consider the balanced 6-sided die, the fair coin, or the dart board with

equal-sized wedges.

The ELM appears in the subjective approach when the experimenter resorts to indiffer-

ence or ignorance with respect to his/her knowledge of the outcome of the experiment. If the

http://www-history.mcs.st-andrews.ac.uk/Biographies/Mises.html
http://en.wikipedia.org/wiki/Subjective_probability
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experimenter has no prior knowledge to suggest that (s)he prefer Heads over Tails, then it is

reasonable for the him/her to assign equal subjective probability to both possible outcomes.

The ELM appears in the relative frequency approach as a fascinating fact of Nature: when

we flip balanced coins over and over again, we observe that the proportion of times that the

coin comes up Heads tends to 1/2. Of course if we assume that the measure theory applies then

we can prove that the sample proportion must tend to 1/2 as expected, but that is putting the

cart before the horse, in a manner of speaking.

The ELM is only available when there are finitely many elements in the sample space.

4.3.5 How to do it with R

In the prob package, a probability space is an object of outcomes S and a vector of probabilities

(called “probs”) with entries that correspond to each outcome in S. When S is a data frame,

we may simply add a column called probs to S and we will be finished; the probability space

will simply be a data frame which we may call S. In the case that S is a list, we may combine

the outcomes and probs into a larger list, space; it will have two components: outcomes

and probs. The only requirements we need are for the entries of probs to be nonnegative and

sum(probs) to be one.

To accomplish this in R, we may use the probspace function. The general syntax is

probspace(x, probs), where x is a sample space of outcomes and probs is a vector (of

the same length as the number of outcomes in x). The specific choice of probs depends on the

context of the problem, and some examples follow to demonstrate some of the more common

choices.

Example 4.4. The Equally Likely Model asserts that every outcome of the sample space has

the same probability, thus, if a sample space has n outcomes, then probs would be a vector

of length n with identical entries 1/n. The quickest way to generate probs is with the rep

function. We will start with the experiment of rolling a die, so that n = 6. We will construct the

sample space, generate the probs vector, and put them together with probspace.

> outcomes <- rolldie(1)

X1

1 1

2 2

3 3

4 4

5 5

6 6

> p <- rep(1/6, times = 6)

[1] 0.1666667 0.1666667 0.1666667 0.1666667 0.1666667 0.1666667

> probspace(outcomes, probs = p)

X1 probs

1 1 0.1666667

2 2 0.1666667

3 3 0.1666667

4 4 0.1666667

5 5 0.1666667

6 6 0.1666667
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The probspace function is designed to save us some time in many of the most common

situations. For example, due to the especial simplicity of the sample space in this case, we

could have achieved the same result with only (note the name change for the first column)

> probspace(1:6, probs = p)

x probs

1 1 0.1666667

2 2 0.1666667

3 3 0.1666667

4 4 0.1666667

5 5 0.1666667

6 6 0.1666667

Further, since the equally likely model plays such a fundamental role in the study of prob-

ability the probspace function will assume that the equally model is desired if no probs are

specified. Thus, we get the same answer with only

> probspace(1:6)

x probs

1 1 0.1666667

2 2 0.1666667

3 3 0.1666667

4 4 0.1666667

5 5 0.1666667

6 6 0.1666667

And finally, since rolling dice is such a common experiment in probability classes, the

rolldie function has an additional logical argument makespace that will add a column of

equally likely probs to the generated sample space:

> rolldie(1, makespace = TRUE)

X1 probs

1 1 0.1666667

2 2 0.1666667

3 3 0.1666667

4 4 0.1666667

5 5 0.1666667

6 6 0.1666667

or just rolldie(1, TRUE). Many of the other sample space functions (tosscoin, cards,

roulette, etc.) have similar makespace arguments. Check the documentation for details.

One sample space function that does NOT have a makespace option is the urnsamples

function. This was intentional. The reason is that under the varied sampling assumptions the

outcomes in the respective sample spaces are NOT, in general, equally likely. It is important for

the user to carefully consider the experiment to decide whether or not the outcomes are equally

likely and then use probspace to assign the model.
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Example 4.5. An unbalanced coin. While the makespace argument to tosscoin is useful to

represent the tossing of a fair coin, it is not always appropriate. For example, suppose our coin

is not perfectly balanced, for instance, maybe the “H” side is somewhat heavier such that the

chances of a H appearing in a single toss is 0.70 instead of 0.5. We may set up the probability

space with

> probspace(tosscoin(1), probs = c(0.7, 0.3))

toss1 probs

1 H 0.7

2 T 0.3

The same procedure can be used to represent an unbalanced die, roulette wheel, etc.

4.3.6 Words of Warning

It should be mentioned that while the splendour of R is uncontested, it, like everything else,

has limits both with respect to the sample/probability spaces it can manage and with respect to

the finite accuracy of the representation of most numbers (see the R FAQ 7.31). When playing

around with probability, one may be tempted to set up a probability space for tossing 100 coins

or rolling 50 dice in an attempt to answer some scintillating question. (Bear in mind: rolling a

die just 9 times has a sample space with over 10 million outcomes.)

Alas, even if there were enough RAM to barely hold the sample space (and there were

enough time to wait for it to be generated), the infinitesimal probabilities that are associated

with so many outcomes make it difficult for the underlying machinery to handle reliably. In

some cases, special algorithms need to be called just to give something that holds asymptoti-

cally. User beware.

4.4 Properties of Probability

4.4.1 Probability Functions

A probability function is a rule that associates with each event A of the sample space a unique

number IP(A) = p, called the probability of A. Any probability function IP satisfies the follow-

ing three Kolmogorov Axioms:

Axiom 4.6. IP(A) ≥ 0 for any event A ⊂ S .

Axiom 4.7. IP(S ) = 1.

Axiom 4.8. If the events A1, A2, A3. . . are disjoint then

IP


n⋃

i=1

Ai

 =
n∑

i=1

IP(Ai) for every n, (4.4.1)

and furthermore,

IP


∞⋃

i=1

Ai

 =
∞∑

i=1

IP(Ai). (4.4.2)
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The intuition behind the axioms: first, the probability of an event should never be negative.

And since the sample space contains all possible outcomes, its probability should be one, or

100%. The final axiom may look intimidating, but it simply means that for a sequence of

disjoint events (in other words, sets that do not overlap), their total probability (measure) should

equal the sum of its parts. For example, the chance of rolling a 1 or a 2 on a die is the chance of

rolling a 1 plus the chance of rolling a 2. The connection to measure theory could not be more

clear.

4.4.2 Properties

For any events A and B,

1. IP(Ac) = 1 − IP(A).

Proof. Since A ∪ Ac = S and A ∩ Ac = ∅, we have

1 = IP(S ) = IP(A ∪ Ac) = IP(A) + IP(Ac).

�

2. IP(∅) = 0.

Proof. Note that ∅ = S c, and use Property 1. �

3. If A ⊂ B , then IP(A) ≤ IP(B).

Proof. Write B = A ∪ (B ∩ Ac), and notice that A ∩ (B ∩ Ac) = ∅; thus

IP(B) = IP(A ∪ (B ∩ Ac)) = IP(A) + IP (B ∩ Ac) ≥ IP(A),

since IP (B ∩ Ac) ≥ 0. �

4. 0 ≤ IP(A) ≤ 1.

Proof. The left inequality is immediate from Axiom 4.6, and the second inequality fol-

lows from Property 3 since A ⊂ S . �

5. The General Addition Rule.

IP(A ∪ B) = IP(A) + IP(B) − IP(A ∩ B). (4.4.3)

More generally, for events A1, A2, A3,. . . , An,

IP


n⋃

i=1

Ai

 =
n∑

i=1

IP(Ai) −
n−1∑

i=1

n∑

j=i+1

IP(Ai ∩ A j) + · · · + (−1)n−1 IP


n⋂

i=1

Ai

 (4.4.4)

6. The Theorem of Total Probability. Let B1, B2, . . . , Bn be mutually exclusive and exhaus-

tive. Then

IP(A) = IP(A ∩ B1) + IP(A ∩ B2) + · · · + IP(A ∩ Bn). (4.4.5)
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4.4.3 Assigning Probabilities

A model of particular interest is the equally likely model. The idea is to divide the sample

space S into a finite collection of elementary events {a1, a2, . . . , aN} that are equally likely in

the sense that each ai has equal chances of occurring. The probability function associated with

this model must satisfy IP(S ) = 1, by Axiom 2. On the other hand, it must also satisfy

IP(S ) = IP({a1, a2, . . . , aN}) = IP(a1 ∪ a2 ∪ · · · ∪ aN) =
N∑

i=1

IP(ai),

by Axiom 3. Since IP(ai) is the same for all i, each one necessarily equals 1/N.

For an event A ⊂ S , we write it as a collection of elementary outcomes: if A =
{
ai1 , ai2 , . . . , aik

}

then A has k elements and

IP(A) = IP(ai1) + IP(ai2) + · · · + IP(aik),

=
1

N
+

1

N
+ · · · + 1

N
,

=
k

N
=

#(A)

#(S )
.

In other words, under the equally likely model, the probability of an event A is determined by

the number of elementary events that A contains.

Example 4.9. Consider the random experiment E of tossing a coin. Then the sample space is

S = {H, T }, and under the equally likely model, these two outcomes have IP(H) = IP(T ) = 1/2.

This model is taken when it is reasonable to assume that the coin is fair.

Example 4.10. Suppose the experiment E consists of tossing a fair coin twice. The sample

space may be represented by S = {HH, HT, TH, TT }. Given that the coin is fair and that

the coin is tossed in an independent and identical manner, it is reasonable to apply the equally

likely model.

What is IP(at least 1 Head)? Looking at the sample space we see the elements HH, HT ,

and TH have at least one Head; thus, IP(at least 1 Head) = 3/4.

What is IP(no Heads)? Notice that the event {no Heads} = {at least one Head}c, which by

Property 1 means IP(no Heads) = 1−IP(at least one Head) = 1−3/4 = 1/4. It is obvious in this

simple example that the only outcome with no Heads is TT , however, this complementation

trick is useful in more complicated circumstances.

Example 4.11. Imagine a three child family, each child being either Boy (B) or Girl (G). An

example sequence of siblings would be BGB. The sample space may be written

S =

{
BBB, BGB, GBB, GGB,

BBG, BGG, GBG, GGG

}
.

Note that for many reasons (for instance, it turns out that girls are slightly more likely to be

born than boys), this sample space is not equally likely. For the sake of argument, however, we

will assume that the elementary outcomes each have probability 1/8.

What is IP(exactly 2 Boys)? Inspecting the sample space reveals three outcomes with ex-

actly two boys: {BBG, BGB, GBB}. Therefore IP(exactly 2 Boys) = 3/8.

What is IP(at most 2 Boys)? One way to solve the problem would be to count the outcomes

that have 2 or less Boys, but a quicker way would be to recognize that the only way that the

event
{
at most 2 Boys

}
does not occur is the event {all Girls}. Thus

IP(at most 2 Boys) = 1 − IP(GGG) = 1 − 1/8 = 7/8.
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Example 4.12. Consider the experiment of rolling a six-sided die, and let the outcome be the

face showing up when the die comes to rest. Then S = {1, 2, 3, 4, 5, 6}. It is usually reasonable

to suppose that the die is fair, so that the six outcomes are equally likely.

Example 4.13. Consider a standard deck of 52 cards. These are usually labeled with the four

suits: Clubs, Diamonds, Hearts, and Spades, and the 13 ranks: 2, 3, 4, . . . , 10, Jack (J), Queen

(Q), King (K), and Ace (A). Depending on the game played, the Ace may be ranked below 2

or above King.

Let the random experiment E consist of drawing exactly one card from a well-shuffled

deck, and let the outcome be the face of the card. Define the events A = {draw an Ace} and
B = {draw a Club}. Bear in mind: we are only drawing one card.

Immediately we have IP(A) = 4/52 since there are four Aces in the deck; similarly, there

are 13 Clubs which implies IP(B) = 13/52.

What is IP(A ∩ B)? We realize that there is only one card of the 52 which is an Ace and a

Club at the same time, namely, the Ace of Clubs. Therefore IP(A ∩ B) = 1/52.

To find IP(A ∪ B) we may use the above with the General Addition Rule to get

IP(A ∪ B) = IP(A) + IP(B) − IP(A ∩ B),

= 4/52 + 13/52 − 1/52,
= 16/52.

Example 4.14. Staying with the deck of cards, let another random experiment be the selection

of a five card stud poker hand, where “five card stud” means that we draw exactly five cards

from the deck without replacement, no more, and no less. It turns out that the sample space

S is so large and complicated that we will be obliged to settle for the trivial description S ={
all possible 5 card hands

}
for the time being. We will have a more precise description later.

What is IP(Royal Flush), or in other words, IP(A, K, Q, J, 10 all in the same suit)?

It should be clear that there are only four possible royal flushes. Thus, if we could only

count the number of outcomes in S then we could simply divide four by that number and we

would have our answer under the equally likely model. This is the subject of Section 4.5.

4.4.4 How to do it with R

Probabilities are calculated in the prob package with the prob function.

Consider the experiment of drawing a card from a standard deck of playing cards. Let’s

denote the probability space associated with the experiment as S, and let the subsets A and B be

defined by the following:

> S <- cards(makespace = TRUE)

> A <- subset(S, suit == "Heart")

> B <- subset(S, rank %in% 7:9)

Now it is easy to calculate

> prob(A)

[1] 0.25

Note that we can get the same answer with
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> prob(S, suit == "Heart")

[1] 0.25

We also find prob(B)= 0.23 (listed here approximately, but 12/52 actually) and prob(S)=

1. Internally, the prob function operates by summing the probs column of its argument. It

will find subsets on-the-fly if desired.

We have as yet glossed over the details. More specifically, prob has three arguments: x,

which is a probability space (or a subset of one), event, which is a logical expression used to

define a subset, and given, which is described in Section 4.6.

WARNING. The event argument is used to define a subset of x, that is, the only outcomes

used in the probability calculation will be those that are elements of x and satisfy event simul-

taneously. In other words, prob(x, event) calculates

prob(intersect(x, subset(x, event)))

Consequently, x should be the entire probability space in the case that event is non-null.

4.5 Counting Methods

The equally-likely model is a convenient and popular way to analyze random experiments. And

when the equally likely model applies, finding the probability of an event A amounts to nothing

more than counting the number of outcomes that A contains (together with the number of events

in S ). Hence, to be a master of probability one must be skilled at counting outcomes in events

of all kinds.

Proposition 4.15. The Multiplication Principle. Suppose that an experiment is composed of

two successive steps. Further suppose that the first step may be performed in n1 distinct ways

while the second step may be performed in n2 distinct ways. Then the experiment may be

performed in n1n2 distinct ways.

More generally, if the experiment is composed of k successive steps which may be performed

in n1, n2, . . . , nk distinct ways, respectively, then the experiment may be performed in n1n2 · · · nk
distinct ways.

Example 4.16. We would like to order a pizza. It will be sure to have cheese (and marinara

sauce), but we may elect to add one or more of the following five (5) available toppings:

pepperoni, sausage, anchovies, olives, and green peppers.

How many distinct pizzas are possible?

There are many ways to approach the problem, but the quickest avenue employs the Mul-

tiplication Principle directly. We will separate the action of ordering the pizza into a series of

stages. At the first stage, we will decide whether or not to include pepperoni on the pizza (two

possibilities). At the next stage, we will decide whether or not to include sausage on the pizza

(again, two possibilities). We will continue in this fashion until at last we will decide whether

or not to include green peppers on the pizza.

At each stage we will have had two options, or ways, to select a pizza to be made. The

Multiplication Principle says that we should multiply the 2’s to find the total number of possible

pizzas: 2 · 2 · 2 · 2 · 2 = 25 = 32.
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Example 4.17. We would like to buy a desktop computer to study statistics. We go to a website

to build our computer our way. Given a line of products we have many options to customize

our computer. In particular, there are 2 choices for a processor, 3 different operating systems,

4 levels of memory, 4 hard drives of differing sizes, and 10 choices for a monitor. How many

possible types of computer must Gell be prepared to build? Answer: 2 · 3 · 4 · 4 · 10 = 960.

4.5.1 Ordered Samples

Imagine a bag with n distinguishable balls inside. Now shake up the bag and select k balls at

random. How many possible sequences might we observe?

Proposition 4.18. The number of ways in which one may select an ordered sample of k subjects

from a population that has n distinguishable members is

• nk if sampling is done with replacement,

• n(n − 1)(n − 2) · · · (n − k + 1) if sampling is done without replacement.

Recall from calculus the notation for factorials:

1! = 1,

2! = 2 · 1 = 2,

3! = 3 · 2 · 1 = 6,
...

n! = n(n − 1)(n − 2) · · · 3 · 2 · 1.

Fact 4.19. The number of permutations of n elements is n!.

Example 4.20. Take a coin and flip it 7 times. How many sequences of Heads and Tails are

possible? Answer: 27 = 128.

Example 4.21. In a class of 20 students, we randomly select a class president, a class vice-

president, and a treasurer. How many ways can this be done? Answer: 20 · 19 · 18 = 6840.

Example 4.22. We rent five movies to watch over the span of two nights. We wish to watch 3

movies on the first night. How many distinct sequences of 3 movies could we possibly watch?

Answer: 5 · 4 · 3 = 60.

4.5.2 Unordered Samples

The number of ways in which one may select an unordered sample of k subjects from a popu-

lation that has n distinguishable members is

• (n − 1 + k)!/[(n − 1)!k!] if sampling is done with replacement,

• n!/[k!(n − k)!] if sampling is done without replacement.

The quantity n!/[k!(n − k)!] is called a binomial coefficient and plays a special role in mathe-

matics; it is denoted (
n

k

)
=

n!

k!(n − k)!
(4.5.1)

and is read “n choose k”.
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ordered = TRUE ordered = FALSE

replace = TRUE nk
(n−1+k)!
(n−1)!k!

replace = FALSE n!
(n−k)!

(
n

k

)

Table 4.1: Sampling k from n objects with urnsamples

Example 4.23. You rent five movies to watch over the span of two nights, but only wish to

watch 3 movies the first night. Your friend, Fred, wishes to borrow some movies to watch at

his house on the first night. You owe Fred a favor, and allow him to select 2 movies from the

set of 5. How many choices does Fred have? Answer:
(
5

2

)
= 10.

Example 4.24. Place 3 six-sided dice into a cup. Next, shake the cup well and pour out the

dice. How many distinct rolls are possible? Answer: (6 − 1 + 3)!/[(6 − 1)!3!] =
(
8
5

)
= 56.

4.5.3 How to do it with R

The factorial n! is computed with the command factorial(n) and the binomial coefficient(
n

k

)
with the command choose(n,k).

The sample spaces we have computed so far have been relatively small, and we can visually

study them without much trouble. However, it is very easy to generate sample spaces that are

prohibitively large. And while R is wonderful and powerful and does almost everything except

wash windows, even R has limits of which we should be mindful.

But we often do not need to actually generate the sample space; it suffices to count the

number of outcomes. The nsamp function will calculate the number of rows in a sample space

made by urnsamples without actually devoting the memory resources necessary to generate

the space. The arguments are n, the number of (distinguishable) objects in the urn, k, the

sample size, and replace, ordered, as above.

Example 4.25. We will compute the number of outcomes for each of the four urnsamples

examples that we saw in Example 4.2. Recall that we took a sample of size two from an urn

with three distinguishable elements.

> nsamp(n = 3, k = 2, replace = TRUE, ordered = TRUE)

[1] 9

> nsamp(n = 3, k = 2, replace = FALSE, ordered = TRUE)

[1] 6

> nsamp(n = 3, k = 2, replace = FALSE, ordered = FALSE)

[1] 3

> nsamp(n = 3, k = 2, replace = TRUE, ordered = FALSE)

[1] 6

Compare these answers with the length of the data frames generated above.
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The Multiplication Principle

A benefit of nsamp is that it is vectorized so that entering vectors instead of numbers for n, k,

replace, and ordered results in a vector of corresponding answers. This becomes particularly

convenient for combinatorics problems.

Example 4.26. There are 11 artists who each submit a portfolio containing 7 paintings for com-

petition in an art exhibition. Unfortunately, the gallery director only has space in the winners’

section to accommodate 12 paintings in a row equally spread over three consecutive walls. The

director decides to give the first, second, and third place winners each a wall to display the

work of their choice. The walls boast 31 separate lighting options apiece. How many displays

are possible?

Answer: The judges will pick 3 (ranked) winners out of 11 (with rep = FALSE, ord =

TRUE). Each artist will select 4 of his/her paintings from 7 for display in a row (rep = FALSE,

ord = TRUE), and lastly, each of the 3 walls has 31 lighting possibilities (rep = TRUE, ord

= TRUE). These three numbers can be calculated quickly with

> n <- c(11, 7, 31)

> k <- c(3, 4, 3)

> r <- c(FALSE, FALSE, TRUE)

> x <- nsamp(n, k, rep = r, ord = TRUE)

[1] 990 840 29791

(Notice that ordered is always TRUE; nsamp will recycle ordered and replace to the

appropriate length.) By the Multiplication Principle, the number of ways to complete the ex-

periment is the product of the entries of x:

> prod(x)

[1] 24774195600

Compare this with the some other ways to compute the same thing:

> (11 * 10 * 9) * (7 * 6 * 5 * 4) * 313

[1] 260290800

or alternatively

> prod(9:11) * prod(4:7) * 313

[1] 260290800

or even

> prod(factorial(c(11, 7))/factorial(c(8, 3))) * 313

[1] 260290800



88 CHAPTER 4. PROBABILITY

As one can guess, in many of the standard counting problems there aren’t substantial sav-

ings in the amount of typing; it is about the same using nsamp versus factorial and choose.

But the virtue of nsamp lies in its collecting the relevant counting formulas in a one-stop shop.

Ultimately, it is up to the user to choose the method that works best for him/herself.

Example 4.27. The Birthday Problem. Suppose that there are n people together in a room.

Each person announces the date of his/her birthday in turn. The question is: what is the prob-

ability of at least one match? If we let the event A represent {there is at least one match}, then
would like to know IP(A), but as we will see, it is more convenient to calculate IP(Ac).

For starters we will ignore leap years and assume that there are only 365 days in a year. Sec-

ond, we will assume that births are equally distributed over the course of a year (which is not

true due to all sorts of complications such as hospital delivery schedules). See http://en.wikipedia.org/wiki

for more.

Let us next think about the sample space. There are 365 possibilities for the first person’s

birthday, 365 possibilities for the second, and so forth. The total number of possible birthday

sequences is therefore #(S ) = 365n.

Now we will use the complementation trick we saw in Example 4.11. We realize that the

only situation in which A does not occur is if there are no matches among all people in the

room, that is, only when everybody’s birthday is different, so

IP(A) = 1 − IP(Ac) = 1 − #(Ac)

#(S )
,

since the outcomes are equally likely. Let us then suppose that there are no matches. The first

person has one of 365 possible birthdays. The second person must not match the first, thus,

the second person has only 364 available birthdays from which to choose. Similarly, the third

person has only 363 possible birthdays, and so forth, until we reach the nth person, who has

only 365 − n + 1 remaining possible days for a birthday. By the Multiplication Principle, we

have #(Ac) = 365 · 364 · · · (365 − n + 1), and

IP(A) = 1 − 365 · 364 · · · (365 − n + 1)
365n

= 1 − 364

365
· 363
365
· · · (365 − n + 1)

365
. (4.5.2)

As a surprising consequence, consider this: how many people does it take to be in the room

so that the probability of at least one match is at least 0.50? Clearly, if there is only n = 1

person in the room then the probability of a match is zero, and when there are n = 366 people

in the room there is a 100% chance of a match (recall that we are ignoring leap years). So how

many people does it take so that there is an equal chance of a match and no match?

When I have asked this question to students, the usual response is “somewhere around

n = 180 people” in the room. The reasoning seems to be that in order to get a 50% chance of

a match, there should be 50% of the available days to be occupied. The number of students in

a typical classroom is 25, so as a companion question I ask students to estimate the probability

of a match when there are n = 25 students in the room. Common estimates are a 1%, or 0.5%,

or even 0.1% chance of a match. After they have given their estimates, we go around the room

and each student announces their birthday. More often than not, we observe a match in the

class, to the students’ disbelief.

Students are usually surprised to hear that, using the formula above, one needs only n = 23

students to have a greater than 50% chance of at least one match. Figure 4.5.1 shows a graph

of the birthday probabilities:

http://en.wikipedia.org/wiki/Birthday_problem
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Figure 4.5.1: The birthday problem

The horizontal line is at p = 0.50 and the vertical line is at n = 23.

4.5.4 How to do it with R

We can make the plot in Figure 4.5.1 with the following sequence of commands.

g <- Vectorize(pbirthday.ipsur)

plot(1:50, g(1:50) ,

xlab = "Number of people in room",

ylab = "Prob(at least one match)",

main = "The Birthday Problem")

abline(h = 0.5)

abline(v = 23, lty = 2) # dashed line

There is a Birthday problem item in the Probability menu of RcmdrPlugin.IPSUR.

In the base R version, one can compute approximate probabilities for the more general case

of probabilities other than 1/2, for differing total number of days in the year, and even for more

than two matches.

4.6 Conditional Probability

Consider a full deck of 52 standard playing cards. Now select two cards from the deck, in

succession. Let A = {first card drawn is an Ace} and B = {second card drawn is an Ace}. Since
there are four Aces in the deck, it is natural to assign IP(A) = 4/52. Suppose we look at the

first card. What now is the probability of B? Of course, the answer depends on the value of the

first card. If the first card is an Ace, then the probability that the second also is an Ace should

be 3/51, but if the first card is not an Ace, then the probability that the second is an Ace should
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1 2 3 4 5 6

1
�

2
� ©

3
� © ©

4 ⊗ © ©
5 © © ⊗ ©
6 © © © © ⊗
Table 4.2: Rolling two dice

be 4/51. As notation for these two situations we write

IP(B|A) = 3/51, IP(B|Ac) = 4/51.

Definition 4.28. The conditional probability of B given A, denoted IP(B|A), is defined by

IP(B|A) = IP(A ∩ B)

IP(A)
, if IP(A) > 0. (4.6.1)

We will not be discussing a conditional probability of B given A when IP(A) = 0, even though

this theory exists, is well developed, and forms the foundation for the study of stochastic pro-

cesses3.

Example 4.29. Toss a coin twice. The sample space is given by S = {HH, HT, TH, TT }.
Let A = {a head occurs} and B = {a head and tail occur}. It should be clear that IP(A) = 3/4,

IP(B) = 2/4, and IP(A ∩ B) = 2/4. What now are the probabilities IP(A|B) and IP(B|A)?

IP(A|B) = IP(A ∩ B)

IP(B)
=

2/4

2/4
= 1,

in other words, once we know that a Head and Tail occur, we may be certain that a Head occurs.

Next

IP(B|A) = IP(A ∩ B)

IP(A)
=

2/4

3/4
=

2

3
,

which means that given the information that a Head has occurred, we no longer need to account

for the outcome TT , and the remaining three outcomes are equally likely with exactly two

outcomes lying in the set B.

Example 4.30. Toss a six-sided die twice. The sample space consists of all ordered pairs (i, j)

of the numbers 1, 2, . . . , 6, that is, S = {(1, 1), (1, 2), . . . , (6, 6)}. We know from Section 4.5

that #(S ) = 62 = 36. Let A = {outcomes match} and B = {sum of outcomes at least 8}. The

sample space may be represented by a matrix:

The outcomes lying in the event A are marked with the symbol “
�

”, the outcomes falling

in B are marked with “©”, and those in both A and B are marked “⊗”. Now it is clear that

IP(A) = 6/36, IP(B) = 15/36, and IP(A ∩ B) = 3/36. Finally,

IP(A|B) = 3/36

15/36
=

1

5
, IP(B|A) = 3/36

6/36
=

1

2
.

3Conditional probability in this case is defined by means of conditional expectation, a topic that is well be-

yond the scope of this text. The interested reader should consult an advanced text on probability theory, such as

Billingsley, Resnick, or Ash Dooleans-Dade.
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Again, we see that given the knowledge that B occurred (the 15 outcomes in the lower right

triangle), there are 3 of the 15 that fall into the set A, thus the probability is 3/15. Similarly,

given that A occurred (we are on the diagonal), there are 3 out of 6 outcomes that also fall in B,

thus, the probability of B given A is 1/2.

4.6.1 How to do it with R

Continuing with Example 4.30, the first thing to do is set up the probability space with the

rolldie function.

> library(prob)

> S <- rolldie(2, makespace = TRUE) # assumes ELM

> head(S) # first few rows

X1 X2 probs

1 1 1 0.02777778

2 2 1 0.02777778

3 3 1 0.02777778

4 4 1 0.02777778

5 5 1 0.02777778

6 6 1 0.02777778

Next we define the events

> A <- subset(S, X1 == X2)

> B <- subset(S, X1 + X2 >= 8)

And now we are ready to calculate probabilities. To do conditional probability, we use the

given argument of the prob function:

> prob(A, given = B)

[1] 0.2

> prob(B, given = A)

[1] 0.5

Note that we do not actually need to define the events A and B separately as long as we

reference the original probability space S as the first argument of the prob calculation:

> prob(S, X1==X2, given = (X1 + X2 >= 8) )

[1] 0.2

> prob(S, X1+X2 >= 8, given = (X1==X2) )

[1] 0.5
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4.6.2 Properties and Rules

The following theorem establishes that conditional probabilities behave just like regular prob-

abilities when the conditioned event is fixed.

Theorem 4.31. For any fixed event A with IP(A) > 0,

1. IP(B|A) ≥ 0, for all events B ⊂ S ,

2. IP(S |A) = 1, and

3. If B1, B2, B3,. . . are disjoint events, then

IP


∞⋃

k=1

Bk

∣∣∣∣∣∣∣
A

 =
∞∑

k=1

IP(Bk|A). (4.6.2)

In other words, IP(·|A) is a legitimate probability function. With this fact in mind, the

following properties are immediate:

Proposition 4.32. For any events A, B, and C with IP(A) > 0,

1. IP(Bc|A) = 1 − IP(B|A).

2. If B ⊂ C then IP(B|A) ≤ IP(C|A).

3. IP[(B ∪C)|A] = IP(B|A) + IP(C|A) − IP[(B ∩C|A)].

4. The Multiplication Rule. For any two events A and B,

IP(A ∩ B) = IP(A) IP(B|A). (4.6.3)

And more generally, for events A1, A2, A3,. . . , An,

IP(A1 ∩ A2 ∩ · · · ∩ An) = IP(A1) IP(A2|A1) · · · IP(An|A1 ∩ A2 ∩ · · · ∩ An−1). (4.6.4)

The Multiplication Rule is very important because it allows us to find probabilities in ran-

dom experiments that have a sequential structure, as the next example shows.

Example 4.33. At the beginning of the section we drew two cards from a standard playing

deck. Now we may answer our original question, what is IP(both Aces)?

IP(both Aces) = IP(A ∩ B) = IP(A) IP(B|A) = 4

52
· 3
51
≈ 0.00452.

4.6.3 How to do it with R

Continuing Example 4.33, we set up the probability space by way of a three step process. First

we employ the cards function to get a data frame L with two columns: rank and suit. Both

columns are stored internally as factors with 13 and 4 levels, respectively.

Next we sample two cards randomly from the L data frame by way of the urnsamples func-

tion. It returns a list Mwhich contains all possible pairs of rows from L (there are choose(52,2)

of them). The sample space for this experiment is exactly the list M.
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At long last we associate a probability model with the sample space. This is right down the

probspace function’s alley. It assumes the equally likely model by default. We call this result

N which is an object of class ps – short for “probability space”.

But do not be intimidated. The object N is nothing more than a list with two elements:

outcomes and probs. The outcomes element is itself just another list, with choose(52,2)

entries, each one a data frame with two rows which correspond to the pair of cards chosen. The

probs element is just a vector with choose(52,2) entries all the same: 1/choose(52,2).

Putting all of this together we do

> library(prob)

> L <- cards()

> M <- urnsamples(L, size = 2)

> N <- probspace(M)

Now that we have the probability space N we are ready to do some probability. We use the

prob function, just like before. The only trick is to specify the event of interest correctly, and

recall that we were interested in IP(both Aces). But if the cards are both Aces then the rank of

both cards should be "A", which sounds like a job for the all function:

> prob(N, all(rank == "A"))

[1] 0.004524887

Note that this value matches what we found in Example 4.33, above. We could calculate

all sorts of probabilities at this point; we are limited only by the complexity of the event’s

computer representation.

Example 4.34. Consider an urn with 10 balls inside, 7 of which are red and 3 of which are

green. Select 3 balls successively from the urn. Let A =
{
1st ball is red

}
, B =

{
2nd ball is red

}
,

and C =
{
3rd ball is red

}
. Then

IP(all 3 balls are red) = IP(A ∩ B ∩ C) = 7

10
· 6
9
· 5
8
≈ 0.2917.

4.6.4 How to do it with R

Example 4.34 is similar to Example 4.33, but it is even easier. We need to set up an urn (vector

L) to hold the balls, we sample from L to get the sample space (data frame M), and we associate

a probability vector (column probs) with the outcomes (rows of M) of the sample space. The

final result is a probability space (an ordinary data frame N).

It is easier for us this time because our urn is a vector instead of a cards() data frame.

Before there were two dimensions of information associated with the outcomes (rank and suit)

but presently we have only one dimension (color).

> library(prob)

> L <- rep(c("red", "green"), times = c(7, 3))

> M <- urnsamples(L, size = 3, replace = FALSE, ordered = TRUE)

> N <- probspace(M)
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Now let us think about how to set up the event {all 3 balls are red}. Rows of N that satisfy
this condition have X1=="red"& X2=="red"& X3=="red", but there must be an easier way.

Indeed, there is. The isrep function (short for “is repeated”) in the prob package was written

for this purpose. The command isrep(N,"red",3) will test each row of N to see whether the

value "red" appears 3 times. The result is exactly what we need to define an event with the

prob function. Observe

> prob(N, isrep(N, "red", 3))

[1] 0.2916667

Note that this answer matches what we found in Example 4.34. Now let us try some other

probability questions. What is the probability of getting two "red"s?

> prob(N, isrep(N, "red", 2))

[1] 0.525

Note that the exact value is 21/40; we will learn a quick way to compute this in Section 5.6.

What is the probability of observing "red", then "green", then "red"?

> prob(N, isin(N, c("red", "green", "red"), ordered = TRUE))

[1] 0.175

Note that the exact value is 7/20 (do it with theMultiplicationRule). What is the probability

of observing "red", "green", and "red", in no particular order?

> prob(N, isin(N, c("red", "green", "red")))

[1] 0.525

We already knew this. It is the probability of observing two "red"s, above.

Example 4.35. Consider two urns, the first with 5 red balls and 3 green balls, and the sec-

ond with 2 red balls and 6 green balls. Your friend randomly selects one ball from the first

urn and transfers it to the second urn, without disclosing the color of the ball. You select

one ball from the second urn. What is the probability that the selected ball is red? Let

A = {transferred ball is red} and B = {selected ball is red}. Write

B = S ∩ B

= (A ∪ Ac) ∩ B

= (A ∩ B) ∪ (Ac ∩ B)

and notice that A ∩ B and Ac ∩ B are disjoint. Therefore

IP(B) = IP(A ∩ B) + IP(Ac ∩ B)

= IP(A) IP(B|A) + IP(Ac) IP(B|Ac)

=
5

8
· 3
9
+
3

8
· 2
9

=
21

72

(which is 7/24 in lowest terms).
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Example 4.36. We saw the RcmdrTestDrive data set in Chapter 2 in which a two-way table

of the smoking status versus the gender was

gender

smoke Female Male Sum

No 80 54 134

Yes 15 19 34

Sum 95 73 168

If one person were selected at random from the data set, then we see from the two-way table

that IP(Female) = 70/168 and IP(Smoker) = 32/168. Now suppose that one of the subjects

quits smoking, but we do not know the person’s gender. If we select one subject at random, what

now is IP(Female)? Let A =
{
the quitter is a female

}
and B =

{
selected person is a female

}
.

Write

B = S ∩ B

= (A ∪ Ac) ∩ B

= (A ∩ B) ∪ (Ac ∩ B)

and notice that A ∩ B and Ac ∩ B are disjoint. Therefore

IP(B) = IP(A ∩ B) + IP(Ac ∩ B),

= IP(A) IP(B|A) + IP(Ac) IP(B|Ac),

=
5

8
· 3
9
+
3

8
· 2
9
,

=
21

72
,

(which is 7/24 in lowest terms).

Using the same reasoning, we can return to the example from the beginning of the section

and show that

IP({second card is an Ace}) = 4/52.

.

4.7 Independent Events

Toss a coin twice. The sample space is S = {HH, HT, TH, TT }. We know that IP(1st toss is H) =

2/4, IP(2nd toss is H) = 2/4, and IP(both H) = 1/4. Then

IP(2nd toss is H | 1st toss is H) =
IP(both H)

IP(1st toss is H)
,

=
1/4

2/4
,

= IP(2nd toss is H).

Intuitively, this means that the information that the first toss is H has no bearing on the proba-

bility that the second toss is H. The coin does not remember the result of the first toss.
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Definition 4.37. Events A and B are said to be independent if

IP(A ∩ B) = IP(A) IP(B). (4.7.1)

Otherwise, the events are said to be dependent.

The connection with the above example stems from the following. We know from Section

4.6 that when IP(B) > 0 we may write

IP(A|B) = IP(A ∩ B)

IP(B)
. (4.7.2)

In the case that A and B are independent, the numerator of the fraction factors so that IP(B)

cancels with the result:

IP(A|B) = IP(A) when A, B are independent. (4.7.3)

The interpretation in the case of independence is that the information that the event B occurred

does not influence the probability of the event A occurring. Similarly, IP(B|A) = IP(B), and

so the occurrence of the event A likewise does not affect the probability of event B. It may

seem more natural to define A and B to be independent when IP(A|B) = IP(A); however, the

conditional probability IP(A|B) is only defined when IP(B) > 0. Our definition is not limited by

this restriction. It can be shown that when IP(A), IP(B) > 0 the two notions of independence

are equivalent.

Proposition 4.38. If the events A and B are independent then

• A and Bc are independent,

• Ac and B are independent,

• Ac and Bc are independent.

Proof. Suppose that A and B are independent. We will show the second one; the others are

similar. We need to show that

IP(Ac ∩ B) = IP(Ac) IP(B).

To this end, note that the Multiplication Rule, Equation 4.6.3 implies

IP(Ac ∩ B) = IP(B) IP(Ac|B),
= IP(B)[1 − IP(A|B)],
= IP(B) IP(Ac).

�

Definition 4.39. The events A, B, and C are mutually independent if the following four condi-

tions are met:

IP(A ∩ B) = IP(A) IP(B),

IP(A ∩ C) = IP(A) IP(C),

IP(B ∩ C) = IP(B) IP(C),

and

IP(A ∩ B ∩C) = IP(A) IP(B) IP(C).

If only the first three conditions hold then A, B, and C are said to be independent pairwise.

Note that pairwise independence is not the same as mutual independence when the number of

events is larger than two.
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We can now deduce the pattern for n events, n > 3. The events will be mutually independent

only if they satisfy the product equality pairwise, then in groups of three, in groups of four, and

so forth, up to all n events at once. For n events, there will be 2n − n − 1 equations that must

be satisfied (see Exercise 4.1). Although these requirements for a set of events to be mutually

independent may seem stringent, the good news is that for most of the situations considered in

this book the conditions will all be met (or at least we will suppose that they are).

Example 4.40. Toss ten coins. What is the probability of observing at least one Head? Answer:

Let Ai =
{
the ith coin shows H

}
, i = 1, 2, . . . , 10. Supposing that we toss the coins in such a

way that they do not interfere with each other, this is one of the situations where all of the Ai

may be considered mutually independent due to the nature of the tossing. Of course, the only

way that there will not be at least one Head showing is if all tosses are Tails. Therefore,

IP(at least one H) = 1 − IP(all T ),
= 1 − IP(Ac

1 ∩ Ac
2 ∩ · · · ∩ Ac

10),

= 1 − IP(Ac
1) IP(A

c
2) · · · IP(Ac

10),

= 1 −
(
1

2

)10
,

which is approximately 0.9990234.

4.7.1 How to do it with R

Example 4.41. Toss ten coins. What is the probability of observing at least one Head?

> S <- tosscoin(10, makespace = TRUE)

> A <- subset(S, isrep(S, vals = "T", nrep = 10))

> 1 - prob(A)

[1] 0.9990234

Compare this answer to what we got in Example 4.40.

Independent, Repeated Experiments

Generalizing from above it is common to repeat a certain experiment multiple times under iden-

tical conditions and in an independent manner. We have seen many examples of this already:

tossing a coin repeatedly, rolling a die or dice, etc.

The iidspace function was designed specifically for this situation. It has three arguments:

x, which is a vector of outcomes, ntrials, which is an integer telling how many times to

repeat the experiment, and probs to specify the probabilities of the outcomes of x in a single

trial.

Example 4.42. An unbalanced coin (continued, see Example 4.5). It was easy enough to

set up the probability space for one unbalanced toss, however, the situation becomes more

complicated when there are many tosses involved. Clearly, the outcome HHH should not have

the same probability as TTT , which should again not have the same probability as HTH. At

the same time, there is symmetry in the experiment in that the coin does not remember the face

it shows from toss to toss, and it is easy enough to toss the coin in a similar way repeatedly.

We may represent tossing our unbalanced coin three times with the following:
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> iidspace(c("H","T"), ntrials = 3, probs = c(0.7, 0.3))

X1 X2 X3 probs

1 H H H 0.343

2 T H H 0.147

3 H T H 0.147

4 T T H 0.063

5 H H T 0.147

6 T H T 0.063

7 H T T 0.063

8 T T T 0.027

As expected, the outcome HHH has the largest probability, while TTT has the smallest.

(Since the trials are independent, IP(HHH) = 0.73 and IP(TTT ) = 0.33, etc.) Note that the

result of the function call is a probability space, not a sample space (which we could construct

already with the tosscoin or urnsamples functions). The same procedure could be used to

model an unbalanced die or any other experiment that may be represented with a vector of

possible outcomes.

Note that iidspace will assume x has equally likely outcomes if no probs argument

is specified. Also note that the argument x is a vector, not a data frame. Something like

iidspace(tosscoin(1),...) would give an error.

4.8 Bayes’ Rule

We mentioned the subjective view of probability in Section 4.3. In this section we introduce a

rule that allows us to update our probabilities when new information becomes available.

Theorem 4.43. (Bayes’ Rule). Let B1, B2, . . . , Bn be mutually exclusive and exhaustive and

let A be an event with IP(A) > 0. Then

IP(Bk|A) =
IP(Bk) IP(A|Bk)∑n
i=1 IP(Bi) IP(A|Bi)

, k = 1, 2, . . . , n. (4.8.1)

Proof. The proof follows from looking at IP(Bk ∩ A) in two different ways. For simplicity,

suppose that P(Bk) > 0 for all k. Then

IP(A) IP(Bk|A) = IP(Bk ∩ A) = IP(Bk) IP(A|Bk).

Since IP(A) > 0 we may divide through to obtain

IP(Bk|A) =
IP(Bk) IP(A|Bk)

IP(A)
.

Now remembering that {Bk} is a partition, the Theorem of Total Probability (Equation 4.4.5)

gives the denominator of the last expression to be

IP(A) =

n∑

k=1

IP(Bk ∩ A) =

n∑

k=1

IP(Bk) IP(A|Bk).

�
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What does it mean? Usually in applications we are given (or know) a priori probabilities

IP(Bk). We go out and collect some data, which we represent by the event A. We want to know:

how do we update IP(Bk) to IP(Bk|A)? The answer: Bayes’ Rule.

Example 4.44. Misfiling Assistants. In this problem, there are three assistants working at a

company: Moe, Larry, and Curly. Their primary job duty is to file paperwork in the filing

cabinet when papers become available. The three assistants have different work schedules:

Moe Larry Curly

Workload 60% 30% 10%

That is, Moe works 60% of the time, Larry works 30% of the time, and Curly does the

remaining 10%, and they file documents at approximately the same speed. Suppose a person

were to select one of the documents from the cabinet at random. Let M be the event

M = {Moe filed the document}

and let L and C be the events that Larry and Curly, respectively, filed the document. What

are these events’ respective probabilities? In the absence of additional information, reasonable

prior probabilities would just be

Moe Larry Curly

Prior Probability IP(M) = 0.60 IP(L) = 0.30 IP(C) = 0.10

Now, the boss comes in one day, opens up the file cabinet, and selects a file at random. The

boss discovers that the file has been misplaced. The boss is so angry at the mistake that (s)he

threatens to fire the one who erred. The question is: who misplaced the file?

The boss decides to use probability to decide, and walks straight to the workload schedule.

(S)he reasons that, since the three employees work at the same speed, the probability that a ran-

domly selected file would have been filed by each one would be proportional to his workload.

The boss notifiesMoe that he has until the end of the day to empty his desk.

But Moe argues in his defense that the boss has ignored additional information. Moe’s

likelihood of having misfiled a document is smaller than Larry’s and Curly’s, since he is a

diligent worker who pays close attention to his work. Moe admits that he works longer than

the others, but he doesn’t make as many mistakes as they do. Thus, Moe recommends that –

before making a decision – the boss should update the probability (initially based on workload

alone) to incorporate the likelihood of having observed a misfiled document.

And, as it turns out, the boss has information about Moe, Larry, and Curly’s filing accuracy

in the past (due to historical performance evaluations). The performance information may be

represented by the following table:

Moe Larry Curly

Misfile Rate 0.003 0.007 0.010

In other words, on the average, Moe misfiles 0.3% of the documents he is supposed to file.

Notice that Moe was correct: he is the most accurate filer, followed by Larry, and lastly Curly.

If the boss were to make a decision based only on the worker’s overall accuracy, then Curly

should get the axe. But Curly hears this and interjects that he only works a short period during
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the day, and consequently makes mistakes only very rarely; there is only the tiniest chance that

he misfiled this particular document.

The boss would like to use this updated information to update the probabilities for the three

assistants, that is, (s)he wants to use the additional likelihood that the document was misfiled

to update his/her beliefs about the likely culprit. Let A be the event that a document is misfiled.

What the boss would like to know are the three probabilities

IP(M|A), IP(L|A), and IP(C|A).

We will show the calculation for IP(M|A), the other two cases being similar. We use Bayes’

Rule in the form

IP(M|A) = IP(M ∩ A)

IP(A)
.

Let’s try to find IP(M∩A), which is just IP(M) · IP(A|M) by the Multiplication Rule. We already

know IP(M) = 0.6 and IP(A|M) is nothing more than Moe’s misfile rate, given above to be

IP(A|M) = 0.003. Thus, we compute

IP(M ∩ A) = (0.6)(0.003) = 0.0018.

Using the same procedure we may calculate

IP(L|A) = 0.0021 and IP(C|A) = 0.0010.

Now let’s find the denominator, IP(A). The key here is the notion that if a file is misplaced,

then either Moe or Larry or Curly must have filed it; there is no one else around to do the

misfiling. Further, these possibilities are mutually exclusive. We may use the Theorem of Total

Probability 4.4.5 to write

IP(A) = IP(A ∩ M) + IP(A ∩ L) + IP(A ∩C).

Luckily, we have computed these above. Thus

IP(A) = 0.0018 + 0.0021 + 0.0010 = 0.0049.

Therefore, Bayes’ Rule yields

IP(M|A) = 0.0018

0.0049
≈ 0.37.

This last quantity is called the posterior probability that Moe misfiled the document, since it

incorporates the observed data that a randomly selected file was misplaced (which is governed

by the misfile rate). We can use the same argument to calculate

Moe Larry Curly

Posterior Probability IP(M|A) ≈ 0.37 IP(L|A) ≈ 0.43 IP(C|A) ≈ 0.20

The conclusion: Larry gets the axe. What is happening is an intricate interplay between

the time on the job and the misfile rate. It is not obvious who the winner (or in this case, loser)

will be, and the statistician needs to consult Bayes’ Rule to determine the best course of action.
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Example 4.45. Suppose the boss gets a change of heart and does not fire anybody. But the next

day (s)he randomly selects another file and again finds it to be misplaced. To decide whom to

fire now, the boss would use the same procedure, with one small change. (S)he would not use

the prior probabilities 60%, 30%, and 10%; those are old news. Instead, she would replace the

prior probabilities with the posterior probabilities just calculated. After the math she will have

new posterior probabilities, updated even more from the day before.

In this way, probabilities found by Bayes’ rule are always on the cutting edge, always

updated with respect to the best information available at the time.

4.8.1 How to do it with R

There are not any special functions for Bayes’ Rule in the prob package, but problems like the

ones above are easy enough to do by hand.

Example 4.46. Misfiling assistants (continued from Example 4.44). We store the prior prob-

abilities and the likelihoods in vectors and go to town.

> prior <- c(0.6, 0.3, 0.1)

> like <- c(0.003, 0.007, 0.01)

> post <- prior * like

> post/sum(post)

[1] 0.3673469 0.4285714 0.2040816

Compare these answers with what we got in Example 4.44. We would replace prior with

post in a future calculation. We could raise like to a power to see how the posterior is affected

by future document mistakes. (Do you see why? Think back to Section 4.7.)

Example 4.47. Let us incorporate the posterior probability (post) information from the last

example and suppose that the assistants misfile seven more documents. Using Bayes’ Rule,

what would the new posterior probabilities be?

> newprior <- post

> post <- newprior * like^7

> post/sum(post)

[1] 0.0003355044 0.1473949328 0.8522695627

We see that the individual with the highest probability of having misfiled all eight docu-

ments given the observed data is no longer Larry, but Curly.

There are two important points. First, we did not divide post by the sum of its entries

until the very last step; we do not need to calculate it, and it will save us computing time to

postpone normalization until absolutely necessary, namely, until we finally want to interpret

them as probabilities.

Second, the reader might be wondering what the boss would get if (s)he skipped the inter-

mediate step of calculating the posterior after only one misfiled document. What if she started

from the original prior, then observed eight misfiled documents, and calculated the posterior?

What would she get? It must be the same answer, of course.

> fastpost <- prior * like^8

> fastpost/sum(fastpost)

[1] 0.0003355044 0.1473949328 0.8522695627

Compare this to what we got in Example 4.45.
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4.9 Random Variables

We already know about experiments, sample spaces, and events. In this section, we are inter-

ested in a number that is associated with the experiment. We conduct a random experiment E

and after learning the outcome ω in S we calculate a number X. That is, to each outcome ω in

the sample space we associate a number X(ω) = x.

Definition 4.48. A random variable X is a function X : S → R that associates to each outcome

ω ∈ S exactly one number X(ω) = x.

We usually denote random variables by uppercase letters such as X, Y , and Z, and we

denote their observed values by lowercase letters x, y, and z. Just as S is the set of all possible

outcomes of E, we call the set of all possible values of X the support of X and denote it by S X.

Example 4.49. Let E be the experiment of flipping a coin twice. We have seen that the sample

space is S = {HH, HT, TH, TT }. Now define the random variable X = the number of heads.

That is, for example, X(HH) = 2, while X(HT ) = 1. We may make a table of the possibilities:

ω ∈ S HH HT TH TT

X(ω) = x 2 1 1 0

Taking a look at the second row of the table, we see that the support of X – the set of all

numbers that X assumes – would be S X = {0, 1, 2}.

Example 4.50. Let E be the experiment of flipping a coin repeatedly until observing a Head.

The sample space would be S = {H, TH, TTH, TTTH, . . .}. Now define the random vari-

able Y = the number of Tails before the first head. Then the support of Y would be S Y =

{0, 1, 2, . . .}.

Example 4.51. Let E be the experiment of tossing a coin in the air, and define the random

variable Z = the time (in seconds) until the coin hits the ground. In this case, the sample space

is inconvenient to describe. Yet the support of Z would be (0,∞). Of course, it is reasonable to
suppose that the coin will return to Earth in a short amount of time; in practice, the set (0,∞)
is admittedly too large. However, we will find that in many circumstances it is mathematically

convenient to study the extended set rather than a restricted one.

There are important differences between the supports of X, Y , and Z. The support of X

is a finite collection of elements that can be inspected all at once. And while the support of

Y cannot be exhaustively written down, its elements can nevertheless be listed in a naturally

ordered sequence. Random variables with supports similar to those of X and Y are called

discrete random variables. We study these in Chapter 5.

In contrast, the support of Z is a continuous interval, containing all rational and irrational

positive real numbers. For this reason4, random variables with supports like Z are called con-

tinuous random variables, to be studied in Chapter 6.

4.9.1 How to do it with R

The primary vessel for this task is the addrv function. There are two ways to use it, and we

will describe both.

4This isn’t really the reason, but it serves as an effective litmus test at the introductory level. See Billingsley or

Resnick.
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Supply a Defining Formula

The first method is based on the transform function. See ?transform. The idea is to write

a formula defining the random variable inside the function, and it will be added as a column to

the data frame. As an example, let us roll a 4-sided die three times, and let us define the random

variable U = X1 − X2 + X3.

> S <- rolldie(3, nsides = 4, makespace = TRUE)

> S <- addrv(S, U = X1 - X2 + X3)

Now let’s take a look at the values of U. In the interest of space, we will only reproduce the

first few rows of S (there are 43 = 64 rows in total).

> head(S)

X1 X2 X3 U probs

1 1 1 1 1 0.015625

2 2 1 1 2 0.015625

3 3 1 1 3 0.015625

4 4 1 1 4 0.015625

5 1 2 1 0 0.015625

6 2 2 1 1 0.015625

We see from the U column it is operating just like it should. We can now answer questions

like

> prob(S, U > 6)

[1] 0.015625

Supply a Function

Sometimes we have a function laying around that we would like to apply to some of the out-

come variables, but it is unfortunately tedious to write out the formula defining what the new

variable would be. The addrv function has an argument FUN specifically for this case. Its value

should be a legitimate function from R, such as sum, mean, median, etc. Or, you can define

your own function. Continuing the previous example, let’s define V = max(X1, X2, X3) and

W = X1 + X2 + X3.

> S <- addrv(S, FUN = max, invars = c("X1", "X2", "X3"), name = "V")

> S <- addrv(S, FUN = sum, invars = c("X1", "X2", "X3"), name = "W")

> head(S)

X1 X2 X3 U V W probs

1 1 1 1 1 1 3 0.015625

2 2 1 1 2 2 4 0.015625

3 3 1 1 3 3 5 0.015625

4 4 1 1 4 4 6 0.015625

5 1 2 1 0 2 4 0.015625

6 2 2 1 1 2 5 0.015625

Notice that addrv has an invars argument to specify exactly to which columns one would

like to apply the function FUN. If no input variables are specified, then addrv will apply FUN

to all non-probs columns. Further, addrv has an optional argument name to give the new

variable; this can be useful when adding several random variables to a probability space (as

above). If not specified, the default name is “X”.
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Marginal Distributions

As we can see above, often after adding a random variable V to a probability space one will

find that V has values that are repeated, so that it becomes difficult to understand what the

ultimate behavior of V actually is. We can use the marginal function to aggregate the rows of

the sample space by values of V , all the while accumulating the probability associated with V’s

distinct values. Continuing our example from above, suppose we would like to focus entirely

on the values and probabilities of V = max(X1, X2, X3).

> marginal(S, vars = "V")

V probs

1 1 0.015625

2 2 0.109375

3 3 0.296875

4 4 0.578125

We could save the probability space of V in a data frame and study it further, if we wish. As

a final remark, we can calculate the marginal distributions of multiple variables desired using

the vars argument. For example, suppose we would like to examine the joint distribution of V

and W.

> marginal(S, vars = c("V", "W"))

V W probs

1 1 3 0.015625

2 2 4 0.046875

3 2 5 0.046875

4 3 5 0.046875

5 2 6 0.015625

6 3 6 0.093750

7 4 6 0.046875

8 3 7 0.093750

9 4 7 0.093750

10 3 8 0.046875

11 4 8 0.140625

12 3 9 0.015625

13 4 9 0.140625

14 4 10 0.093750

15 4 11 0.046875

16 4 12 0.015625

Note that the default value of vars is the names of all columns except probs. This can be

useful if there are duplicated rows in the probability space.
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Chapter Exercises

Exercise 4.1. Prove the assertion given in the text: the number of conditions that the events A1,

A2, . . . , An must satisfy in order to be mutually independent is 2n − n − 1. (Hint: think about

Pascal’s triangle.)

Answer: The events must satisfy the product equalities two at a time, of which there are
(
n

2

)
,

then they must satisfy an additional
(
n

3

)
conditions three at a time, and so on, until they satisfy

the
(
n

n

)
= 1 condition including all n events. In total, there are

(
n

2

)
+

(
n

3

)
+ · · · +

(
n

n

)
=

n∑

k=0

(
n

k

)
−

[(
n

0

)
+

(
n

1

)]

conditions to be satisfied, but the binomial series in the expression on the right is the sum of

the entries of the nth row of Pascal’s triangle, which is 2n.
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Chapter 5

Discrete Distributions

In this chapter we introduce discrete random variables, those who take values in a finite or

countably infinite support set. We discuss probability mass functions and some special ex-

pectations, namely, the mean, variance and standard deviation. Some of the more important

discrete distributions are explored in detail, and the more general concept of expectation is

defined, which paves the way for moment generating functions.

We give special attention to the empirical distribution since it plays such a fundamental

role with respect to re sampling and Chapter 13; it will also be needed in Section 10.5.1 where

we discuss the Kolmogorov-Smirnov test. Following this is a section in which we introduce a

catalogue of discrete random variables that can be used to model experiments.

There are some comments on simulation, and we mention transformations of random vari-

ables in the discrete case. The interested reader who would like to learn more about any of

the assorted discrete distributions mentioned here should take a look at Univariate Discrete

Distributions by Johnson et al [50].

What do I want them to know?

• how to choose a reasonable discrete model under a variety of physical circumstances

• the notion of mathematical expectation, how to calculate it, and basic properties

• moment generating functions (yes, I want them to hear about those)

• the general tools of the trade for manipulation of continuous random variables, integra-

tion, etc.

• some details on a couple of discrete models, and exposure to a bunch of other ones

• how to make new discrete random variables from old ones

5.1 Discrete Random Variables

5.1.1 Probability Mass Functions

Discrete random variables are characterized by their supports which take the form

S X = {u1, u2, . . . , uk} or S X = {u1, u2, u3 . . .}. (5.1.1)

107
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Every discrete random variable X has associated with it a probability mass function (PMF)

fX : S X → [0, 1] defined by

fX(x) = IP(X = x), x ∈ S X. (5.1.2)

Since values of the PMF represent probabilities, we know from Chapter 4 that PMFs enjoy

certain properties. In particular, all PMFs satisfy

1. fX(x) > 0 for x ∈ S ,

2.
∑

x∈S fX(x) = 1, and

3. IP(X ∈ A) = ∑
x∈A fX(x), for any event A ⊂ S .

Example 5.1. Toss a coin 3 times. The sample space would be

S = {HHH, HTH, THH, TTH, HHT, HTT, THT, TTT } .

Now let X be the number of Heads observed. Then X has support S X = {0, 1, 2, 3}. Assuming

that the coin is fair and was tossed in exactly the same way each time, it is not unreasonable

to suppose that the outcomes in the sample space are all equally likely. What is the PMF of

X? Notice that X is zero exactly when the outcome TTT occurs, and this event has probability

1/8. Therefore, fX(0) = 1/8, and the same reasoning shows that fX(3) = 1/8. Exactly three

outcomes result in X = 1, thus, fX(1) = 3/8 and fX(3) holds the remaining 3/8 probability (the

total is 1). We can represent the PMF with a table:

x ∈ S X 0 1 2 3 Total

fX(x) = IP(X = x) 1/8 3/8 3/8 1/8 1

5.1.2 Mean, Variance, and Standard Deviation

There are numbers associated with PMFs. One important example is the mean µ, also known

as IE X:

µ = IE X =
∑

x∈S
x fX(x), (5.1.3)

provided the (potentially infinite) series
∑ |x| fX(x) is convergent. Another important number is

the variance:

σ2 = IE(X − µ)2 =
∑

x∈S
(x − µ)2 fX(x), (5.1.4)

which can be computed (see Exercise 5.4) with the alternate formula σ2 = IE X2 − (IE X)2.

Directly defined from the variance is the standard deviation σ =
√
σ2.

Example 5.2. We will calculate the mean of X in Example 5.1.

µ =

3∑

x=0

x fX(x) = 0 · 1
8
+ 1 · 3

8
+ 2 · 3

8
+ 3 · 1

8
= 3.5.

We interpret µ = 3.5 by reasoning that if we were to repeat the random experiment many times,

independently each time, observe many corresponding outcomes of the random variable X, and

take the sample mean of the observations, then the calculated value would fall close to 3.5. The

approximation would get better as we observe more and more values of X (another form of the

Law of Large Numbers; see Section 4.3). Another way it is commonly stated is that X is 3.5

“on the average” or “in the long run”.
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Remark 5.3. Note that although we say X is 3.5 on the average, we must keep in mind that our

X never actually equals 3.5 (in fact, it is impossible for X to equal 3.5).

Related to the probability mass function fX(x) = IP(X = x) is another important function

called the cumulative distribution function (CDF), FX. It is defined by the formula

FX(t) = IP(X ≤ t), −∞ < t < ∞. (5.1.5)

We know that all PMFs satisfy certain properties, and a similar statement may be made for

CDFs. In particular, any CDF FX satisfies

• FX is nondecreasing (t1 ≤ t2 implies FX(t1) ≤ FX(t2)).

• FX is right-continuous (limt→a+ FX(t) = FX(a) for all a ∈ R).

• limt→−∞ FX(t) = 0 and limt→∞ FX(t) = 1.

We say that X has the distribution FX and we write X ∼ FX. In an abuse of notation we will

also write X ∼ fX and for the named distributions the PMF or CDF will be identified by the

family name instead of the defining formula.

5.1.3 How to do it with R

The mean and variance of a discrete random variable is easy to compute at the console. Let’s

return to Example 5.2. We will start by defining a vector x containing the support of X, and a

vector f to contain the values of fX at the respective outcomes in x:

> x <- c(0,1,2,3)

> f <- c(1/8, 3/8, 3/8, 1/8)

To calculate the mean µ, we need to multiply the corresponding values of x and f and add

them. This is easily accomplished in R since operations on vectors are performed element-wise

(see Section 2.3.4):

> mu <- sum(x * f)

> mu

[1] 1.5

To compute the variance σ2, we subtract the value of mu from each entry in x, square the

answers, multiply by f, and sum. The standard deviation σ is simply the square root of σ2.

> sigma2 <- sum((x-mu)^2 * f)

> sigma2

[1] 0.75

> sigma <- sqrt(sigma2)

> sigma

[1] 0.8660254

Finally, we may find the values of the CDF FX on the support by accumulating the proba-

bilities in fX with the cumsum function.
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> F = cumsum(f)

> F

[1] 0.125 0.500 0.875 1.000

As easy as this is, it is even easier to do with the distrEx package [74]. We define a

random variable X as an object, then compute things from the object such as mean, variance,

and standard deviation with the functions E, var, and sd:

> library(distrEx)

> X <- DiscreteDistribution(supp = 0:3, prob = c(1,3,3,1)/8)

> E(X); var(X); sd(X)

[1] 1.5

[1] 0.75

[1] 0.8660254

5.2 The Discrete Uniform Distribution

We have seen the basic building blocks of discrete distributions and we now study particular

models that statisticians often encounter in the field. Perhaps the most fundamental of all is the

discrete uniform distribution.

A random variable X with the discrete uniform distribution on the integers 1, 2, . . . ,m has

PMF

fX(x) =
1

m
, x = 1, 2, . . . ,m. (5.2.1)

We write X ∼ disunif(m). A random experiment where this distribution occurs is the choice

of an integer at random between 1 and 100, inclusive. Let X be the number chosen. Then

X ∼ disunif(m = 100) and

IP(X = x) =
1

100
, x = 1, . . . , 100.

We find a direct formula for the mean of X ∼ disunif(m):

µ =

m∑

x=1

x fX(x) =

m∑

x=1

x · 1
m
=

1

m
(1 + 2 + · · · + m) = m + 1

2
, (5.2.2)

where we have used the famous identity 1+ 2+ · · ·+m = m(m+ 1)/2. That is, if we repeatedly

choose integers at random from 1 to m then, on the average, we expect to get (m + 1)/2. To get

the variance we first calculate

IE X2 =
1

m

m∑

x=1

x2 =
1

m

m(m + 1)(2m + 3)

6
=

(m + 1)(2m + 1)

6
,

and finally,

σ2 = IE X2 − (IE X)2 =
(m + 1)(2m + 1)

6
−

(
m + 1

2

)2
= · · · = m2 − 1

12
. (5.2.3)

Example 5.4. Roll a die and let X be the upward face showing. Then m = 6, µ = 7/2 = 3.5,

and σ2 = (62 − 1)/12 = 35/12.
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5.2.1 How to do it with R

From the console: One can choose an integer at random with the sample function. The gen-

eral syntax to simulate a discrete uniform random variable is sample(x, size, replace

= TRUE).

The argument x identifies the numbers from which to randomly sample. If x is a number,

then sampling is done from 1 to x. The argument size tells how big the sample size should

be, and replace tells whether or not numbers should be replaced in the urn after having been

sampled. The default option is replace = FALSE but for discrete uniforms the sampled values

should be replaced. Some examples follow.

5.2.2 Examples

• To roll a fair die 3000 times, do sample(6, size = 3000, replace = TRUE).

• To choose 27 random numbers from 30 to 70, do sample(30:70, size = 27, replace

= TRUE).

• To flip a fair coin 1000 times, do sample(c("H","T"), size = 1000, replace =

TRUE).

With the R Commander: Follow the sequence Probability ⊲ Discrete Distributions ⊲ Dis-

crete Uniform distribution ⊲ Simulate Discrete uniform variates. . . .

Suppose we would like to roll a fair die 3000 times. In the Number of samples field we

enter 1. Next, we describe what interval of integers to be sampled. Since there are six faces

numbered 1 through 6, we set from = 1, we set to = 6, and set by = 1 (to indicate that we

travel from 1 to 6 in increments of 1 unit). We will generate a list of 3000 numbers selected

from among 1, 2, . . . , 6, and we store the results of the simulation. For the time being, we

select New Data set. Click OK.

Since we are defining a new data set, theRCommander requests a name for the data set. The

default name is Simset1, although in principle you could name it whatever you like (according

to R’s rules for object names). We wish to have a list that is 3000 long, so we set Sample

Size = 3000 and click OK.

In the R Console window, the R Commander should tell you that Simset1 has been initial-

ized, and it should also alert you that There was 1 discrete uniform variate sample

stored in Simset 1.. To take a look at the rolls of the die, we click View data set and a

window opens.

The default name for the variable is disunif.sim1.

5.3 The Binomial Distribution

The binomial distribution is based on a Bernoulli trial, which is a random experiment in which

there are only two possible outcomes: success (S ) and failure (F). We conduct the Bernoulli

trial and let

X =


1 if the outcome is S ,

0 if the outcome is F.
(5.3.1)
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If the probability of success is p then the probability of failure must be 1 − p = q and the PMF

of X is

fX(x) = px(1 − p)1−x, x = 0, 1. (5.3.2)

It is easy to calculate µ = IE X = p and IE X2 = p so that σ2 = p − p2 = p(1 − p).

5.3.1 The Binomial Model

The Binomial model has three defining properties:

• Bernoulli trials are conducted n times,

• the trials are independent,

• the probability of success p does not change between trials.

If X counts the number of successes in the n independent trials, then the PMF of X is

fX(x) =

(
n

x

)
px(1 − p)n−x, x = 0, 1, 2, . . . , n. (5.3.3)

We say that X has a binomial distribution and we write X ∼ binom(size = n, prob = p). It

is clear that fX(x) ≥ 0 for all x in the support because the value is the product of nonnegative

numbers. We next check that
∑

f (x) = 1:

n∑

x=0

(
n

x

)
px(1 − p)n−x = [p + (1 − p)]n = 1n = 1.

We next find the mean:

µ =

n∑

x=0

x

(
n

x

)
px(1 − p)n−x,

=

n∑

x=1

x
n!

x!(n − x)!
pxqn−x,

=n · p
n∑

x=1

(n − 1)!
(x − 1)!(n − x)!

px−1qn−x,

=np

n−1∑

x−1=0

(
n − 1
x − 1

)
p(x−1)(1 − p)(n−1)−(x−1) ,

=np.

A similar argument shows that IE X(X − 1) = n(n − 1)p2 (see Exercise 5.5). Therefore

σ2 = IE X(X − 1) + IE X − [IE X]2,

=n(n − 1)p2 + np − (np)2,
=n2p2 − np2 + np − n2p2,
=np − np2 = np(1 − p).
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Example 5.5. A four-child family. Each child may be either a boy (B) or a girl (G). For sim-

plicity we suppose that IP(B) = IP(G) = 1/2 and that the genders of the children are determined

independently. If we let X count the number of B’s, then X ∼ binom(size = 4, prob = 1/2).

Further, IP(X = 2) is

fX(2) =

(
4

2

)
(1/2)2(1/2)2 =

6

24
.

The mean number of boys is 4(1/2) = 2 and the variance of X is 4(1/2)(1/2) = 1.

5.3.2 How to do it with R

The corresponding R function for the PMF and CDF are dbinom and pbinom, respectively. We

demonstrate their use in the following examples.

Example 5.6. We can calculate it in R Commander under the Binomial Distribution menu with

the Binomial probabilities menu item.

Pr

0 0.0625

1 0.2500

2 0.3750

3 0.2500

4 0.0625

We know that the binom(size = 4, prob = 1/2) distribution is supported on the integers 0,

1, 2, 3, and 4; thus the table is complete. We can read off the answer to be IP(X = 2) = 0.3750.

Example 5.7. Roll 12 dice simultaneously, and let X denote the number of 6’s that appear. We

wish to find the probability of getting seven, eight, or nine 6’s. If we let S =
{
get a 6 on one roll

}
,

then IP(S ) = 1/6 and the rolls constitute Bernoulli trials; thus X ∼ binom(size =12, prob =1/6)

and our task is to find IP(7 ≤ X ≤ 9). This is just

IP(7 ≤ X ≤ 9) =

9∑

x=7

(
12

x

)
(1/6)x(5/6)12−x.

Again, one method to solve this problem would be to generate a probability mass table and add

up the relevant rows. However, an alternative method is to notice that IP(7 ≤ X ≤ 9) = IP(X ≤
9) − IP(X ≤ 6) = FX(9) − FX(6), so we could get the same answer by using the Binomial tail

probabilities. . . menu in the R Commander or the following from the command line:

> pbinom(9, size=12, prob=1/6) - pbinom(6, size=12, prob=1/6)

[1] 0.001291758

> diff(pbinom(c(6,9), size = 12, prob = 1/6)) # same thing

[1] 0.001291758
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Example 5.8. Toss a coin three times and let X be the number of Heads observed. We know

from before that X ∼ binom(size = 3, prob = 1/2) which implies the following PMF:

x = #of Heads 0 1 2 3

f (x) = IP(X = x) 1/8 3/8 3/8 1/8

Our next goal is to write down the CDF of X explicitly. The first case is easy: it is impossible

for X to be negative, so if x < 0 then we should have IP(X ≤ x) = 0. Now choose a value x

satisfying 0 ≤ x < 1, say, x = 0.3. The only way that X ≤ x could happen would be if X = 0,

therefore, IP(X ≤ x) should equal IP(X = 0), and the same is true for any 0 ≤ x < 1. Similarly,

for any 1 ≤ x < 2, say, x = 1.73, the event {X ≤ x} is exactly the event {X = 0 or X = 1}.
Consequently, IP(X ≤ x) should equal IP(X = 0 or X = 1) = IP(X = 0) + IP(X = 1). Continuing

in this fashion, we may figure out the values of FX(x) for all possible inputs −∞ < x < ∞, and
we may summarize our observations with the following piecewise defined function:

FX(x) = IP(X ≤ x) =



0, x < 0,
1
8
, 0 ≤ x < 1,

1
8
+ 3

8
= 4

8
, 1 ≤ x < 2,

4
8
+ 3

8
= 7

8
, 2 ≤ x < 3,

1, x ≥ 3.

In particular, the CDF of X is defined for the entire real line, R. The CDF is right continuous

and nondecreasing. A graph of the binom(size = 3, prob = 1/2) CDF is shown in Figure

5.3.1.

Example 5.9. Another way to do Example 5.8 is with the distr family of packages [74]. They

use an object oriented approach to random variables, that is, a random variable is stored in an

object X, and then questions about the random variable translate to functions on and involving

X. Random variables with distributions from the base package are specified by capitalizing the

name of the distribution.

> library(distr)

> X <- Binom(size = 3, prob = 1/2)

> X

Distribution Object of Class: Binom

size: 3

prob: 0.5

The analogue of the dbinom function for X is the d(X) function, and the analogue of the

pbinom function is the p(X) function. Compare the following:

> d(X)(1) # pmf of X evaluated at x = 1

[1] 0.375

> p(X)(2) # cdf of X evaluated at x = 2

[1] 0.875
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Figure 5.3.1: Graph of the binom(size = 3, prob = 1/2) CDF

Random variables defined via the distr package may be plotted, which will return graphs

of the PMF, CDF, and quantile function (introduced in Section 6.3.1). See Figure 5.3.2 for an

example.
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Given X ∼ dbinom(size = n, prob = p).

How to do: with stats (default) with distr

PMF: IP(X = x) dbinom(x, size = n, prob = p) d(X)(x)

CDF: IP(X ≤ x) pbinom(x, size = n, prob = p) p(X)(x)

Simulate k variates rbinom(k, size = n, prob = p) r(X)(k)

For distr need X <- Binom(size =n, prob =p)

Table 5.1: Correspondence between stats and distr
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Figure 5.3.2: The binom(size = 3, prob = 0.5) distribution from the distr package

5.4 Expectation and Moment Generating Functions

5.4.1 The Expectation Operator

We next generalize some of the concepts from Section 5.1.2. There we saw that every1 PMF

has two important numbers associated with it:

µ =
∑

x∈S
x fX(x), σ

2 =
∑

x∈S
(x − µ)2 fX(x). (5.4.1)

Intuitively, for repeated observations of X we would expect the sample mean to closely approx-

imate µ as the sample size increases without bound. For this reason we call µ the expected

value of X and we write µ = IE X, where IE is an expectation operator.

1Not every, only those PMFs for which the (potentially infinite) series converges.
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Definition 5.10. More generally, given a function g we define the expected value of g(X) by

IE g(X) =
∑

x∈S
g(x) fX(x), (5.4.2)

provided the (potentially infinite) series
∑

x |g(x)| f (x) is convergent. We say that IE g(X) exists.

In this notation the variance is σ2 = IE(X − µ)2 and we prove the identity

IE(X − µ)2 = IE X2 − (IE X)2 (5.4.3)

in Exercise 5.4. Intuitively, for repeated observations of X we would expect the sample mean

of the g(X) values to closely approximate IE g(X) as the sample size increases without bound.

Let us take the analogy further. If we expect g(X) to be close to IE g(X) on the average,

where would we expect 3g(X) to be on the average? It could only be 3 IE g(X). The following

theorem makes this idea precise.

Proposition 5.11. For any functions g and h, any random variable X, and any constant c:

1. IE c = c,

2. IE[c · g(X)] = c IE g(X)

3. IE[g(X) + h(X)] = IE g(X) + IE h(X),

provided IE g(X) and IE h(X) exist.

Proof. Go directly from the definition. For example,

IE[c · g(X)] =
∑

x∈S
c · g(x) fX(x) = c ·

∑

x∈S
g(x) fX(x) = c IE g(X).

�

5.4.2 Moment Generating Functions

Definition 5.12. Given a random variable X, its moment generating function (abbreviated

MGF) is defined by the formula

MX(t) = IE etX =
∑

x∈S
etx fX(x), (5.4.4)

provided the (potentially infinite) series is convergent for all t in a neighborhood of zero (that

is, for all −ǫ < t < ǫ, for some ǫ > 0).

Note that for any MGF MX,

MX(0) = IE e0·X = IE 1 = 1. (5.4.5)

We will calculate the MGF for the two distributions introduced above.

Example 5.13. Find the MGF for X ∼ disunif(m).

Since f (x) = 1/m, the MGF takes the form

M(t) =

m∑

x=1

etx
1

m
=

1

m
(et + e2t + · · · + emt), for any t.
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Example 5.14. Find the MGF for X ∼ binom(size = n, prob = p).

MX(t) =

n∑

x=0

etx
(
n

x

)
px(1 − p)n−x,

=

n−x∑

x=0

(
n

x

)
(pet)xqn−x,

=(pet + q)n, for any t.

Applications

We will discuss three applications of moment generating functions in this book. The first is the

fact that an MGF may be used to accurately identify the probability distribution that generated

it, which rests on the following:

Theorem 5.15. The moment generating function, if it exists in a neighborhood of zero, deter-

mines a probability distribution uniquely.

Proof. Unfortunately, the proof of such a theorem is beyond the scope of a text like this one.

Interested readers could consult Billingsley [8]. �

We will see an example of Theorem 5.15 in action.

Example 5.16. Suppose we encounter a random variable which has MGF

MX(t) = (0.3 + 0.7et)13.

Then X ∼ binom(size = 13, prob = 0.7).

An MGF is also known as a “Laplace Transform” and is manipulated in that context in

many branches of science and engineering.

Why is it called a Moment Generating Function?

This brings us to the second powerful application of MGFs. Many of the models we study

have a simple MGF, indeed, which permits us to determine the mean, variance, and even higher

moments very quickly. Let us see why. We already know that

M(t) =
∑

x∈S
etx f (x).

Take the derivative with respect to t to get

M′(t) =
d

dt


∑

x∈S
etx f (x)

 =
∑

x∈S

d

dt

(
etx f (x)

)
=

∑

x∈S
xetx f (x), (5.4.6)

and so if we plug in zero for t we see

M′(0) =
∑

x∈S
xe0 f (x) =

∑

x∈S
x f (x) = µ = IE X. (5.4.7)
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Similarly, M′′(t) =
∑

x2etx f (x) so that M′′(0) = IE X2. And in general, we can see2 that

M
(r)
X
(0) = IE Xr = rthmoment of Xabout the origin. (5.4.8)

These are also known as raw moments and are sometimes denoted µ′r. In addition to these are

the so called central moments µr defined by

µr = IE(X − µ)r, r = 1, 2, . . . (5.4.9)

Example 5.17. Let X ∼ binom(size = n, prob = p) with M(t) = (q + pet)n. We calculated

the mean and variance of a binomial random variable in Section 5.3 by means of the binomial

series. But look how quickly we find the mean and variance with the moment generating

function.

M′(t) =n(q + pet)n−1pet |t=0 ,
=n · 1n−1p,
=np.

And

M′′(0) =n(n − 1)[q + pet]n−2(pet)2 + n[q + pet]n−1pet |t=0 ,
IE X2 =n(n − 1)p2 + np.

Therefore

σ2 = IE X2 − (IE X)2,

=n(n − 1)p2 + np − n2p2,
=np − np2 = npq.

See how much easier that was?

Remark 5.18. We learned in this section that M(r)(0) = IE Xr. We remember from Calculus II

that certain functions f can be represented by a Taylor series expansion about a point a, which

takes the form

f (x) =

∞∑

r=0

f (r)(a)

r!
(x − a)r, for all |x − a| < R, (5.4.10)

where R is called the radius of convergence of the series (see Appendix E.3). We combine the

two to say that if an MGF exists for all t in the interval (−ǫ, ǫ), then we can write

MX(t) =

∞∑

r=0

IE Xr

r!
tr, for all |t| < ǫ. (5.4.11)

2We are glossing over some significant mathematical details in our derivation. Suffice it to say that when the

MGF exists in a neighborhood of t = 0, the exchange of differentiation and summation is valid in that neighbor-

hood, and our remarks hold true.
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5.4.3 How to do it with R

The distrEx package provides an expectation operator E which can be used on random vari-

ables that have been defined in the ordinary distr sense:

> X <- Binom(size = 3, prob = 0.45)

> library(distrEx)

> E(X)

[1] 1.35

> E(3 * X + 4)

[1] 8.05

For discrete random variables with finite support, the expectation is simply computed with

direct summation. In the case that the random variable has infinite support and the function is

crazy, then the expectation is not computed directly, rather, it is estimated by first generating a

random sample from the underlying model and next computing a sample mean of the function

of interest.

There are methods for other population parameters:

> var(X)

[1] 0.7425

> sd(X)

[1] 0.8616844

There are even methods for IQR, mad, skewness, and kurtosis.

5.5 The Empirical Distribution

Do an experiment n times and observe n values x1, x2, . . . , xn of a random variable X. For sim-

plicity in most of the discussion that follows it will be convenient to imagine that the observed

values are distinct, but the remarks are valid even when the observed values are repeated.

Definition 5.19. The empirical cumulative distribution function Fn (written ECDF) is the prob-

ability distribution that places probability mass 1/n on each of the values x1, x2, . . . , xn. The

empirical PMF takes the form

fX(x) =
1

n
, x ∈ {x1, x2, ..., xn} . (5.5.1)

If the value xi is repeated k times, the mass at xi is accumulated to k/n.

The mean of the empirical distribution is

µ =
∑

x∈S
x fX(x) =

n∑

i=1

xi ·
1

n
(5.5.2)

and we recognize this last quantity to be the sample mean, x. The variance of the empirical

distribution is

σ2 =
∑

x∈S
(x − µ)2 fX(x) =

n∑

i=1

(xi − x)2 · 1
n

(5.5.3)
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and this last quantity looks very close to what we already know to be the sample variance.

s2 =
1

n − 1

n∑

i=1

(xi − x)2. (5.5.4)

The empirical quantile function is the inverse of the ECDF. See Section 6.3.1.

5.5.1 How to do it with R

The empirical distribution is not directly available as a distribution in the same way that the

other base probability distributions are, but there are plenty of resources available for the deter-

mined investigator.

Given a data vector of observed values x, we can see the empirical CDF with the ecdf

function:

> x <- c(4, 7, 9, 11, 12)

> ecdf(x)

Empirical CDF

Call: ecdf(x)

x[1:5] = 4, 7, 9, 11, 12

The above shows that the returned value of ecdf(x) is not a number but rather a function.

The ECDF is not usually used by itself in this form, by itself. More commonly it is used as

an intermediate step in a more complicated calculation, for instance, in hypothesis testing (see

Chapter 10) or resampling (see Chapter 13). It is nevertheless instructive to see what the ecdf

looks like, and there is a special plot method for ecdf objects.

> plot(ecdf(x))
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Figure 5.5.1: The empirical CDF

See Figure 5.5.1. The graph is of a right-continuous function with jumps exactly at the

locations stored in x. There are no repeated values in x so all of the jumps are equal to 1/5 =

0.2.

The empirical PDF is not usually of particular interest in itself, but if we really wanted we

could define a function to serve as the empirical PDF:

> epdf <- function(x) function(t){sum(x %in% t)/length(x)}

> x <- c(0,0,1)

> epdf(x)(0) # should be 2/3

[1] 0.6666667

To simulate from the empirical distribution supported on the vector x, we use the sample

function.

> x <- c(0, 0, 1)

> sample(x, size = 7, replace = TRUE)

[1] 0 1 0 1 1 0 0

We can get the empirical quantile function in R with quantile(x, probs = p, type

= 1); see Section 6.3.1.

As we hinted above, the empirical distribution is significant more because of how and where

it appears in more sophisticated applications. We will explore some of these in later chapters –

see, for instance, Chapter 13.
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5.6 Other Discrete Distributions

The binomial and discrete uniform distributions are popular, and rightly so; they are simple and

form the foundation for many other more complicated distributions. But the particular uniform

and binomial models only apply to a limited range of problems. In this section we introduce

situations for which we need more than what the uniform and binomial offer.

5.6.1 Dependent Bernoulli Trials

The Hypergeometric Distribution

Consider an urn with 7 white balls and 5 black balls. Let our random experiment be to randomly

select 4 balls, without replacement, from the urn. Then the probability of observing 3 white

balls (and thus 1 black ball) would be

IP(3W, 1B) =

(
7

3

)(
5

1

)

(
12

4

) . (5.6.1)

More generally, we sample without replacement K times from an urn with M white balls and

N black balls. Let X be the number of white balls in the sample. The PMF of X is

fX(x) =

(
M

x

)(
N

K−x

)

(
M+N

K

) . (5.6.2)

We say that X has a hypergeometric distribution and write X ∼ hyper(m = M, n = N, k = K).

The support set for the hypergeometric distribution is a little bit tricky. It is tempting to say

that x should go from 0 (no white balls in the sample) to K (no black balls in the sample), but

that does not work if K > M, because it is impossible to have more white balls in the sample

than there were white balls originally in the urn. We have the same trouble if K > N. The good

news is that the majority of examples we study have K ≤ M and K ≤ N and we will happily

take the support to be x = 0, 1, . . . , K.

It is shown in Exercise 5.6 that

µ = K
M

M + N
, σ2 = K

MN

(M + N)2
M + N − K

M + N − 1 . (5.6.3)

The associated R functions for the PMF and CDF are dhyper(x, m, n, k) and phyper,

respectively. There are two more functions: qhyper, which we will discuss in Section 6.3.1,

and rhyper, discussed below.

Example 5.20. Suppose in a certain shipment of 250 Pentium processors there are 17 defec-

tive processors. A quality control consultant randomly collects 5 processors for inspection to

determine whether or not they are defective. Let X denote the number of defectives in the

sample.

1. Find the probability of exactly 3 defectives in the sample, that is, find IP(X = 3).

Solution: We know that X ∼ hyper(m = 17, n = 233, k = 5). So the required probability

is just

fX(3) =

(
17

3

)(
233

2

)

(
250

5

) .

To calculate it in R we just type
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> dhyper(3, m = 17, n = 233, k = 5)

[1] 0.002351153

To find it with the R Commander we go Probability ⊲ Discrete Distributions ⊲ Hyperge-

ometric distribution ⊲ Hypergeometric probabilities. . . .We fill in the parametersm = 17,

n = 233, and k = 5. Click OK, and the following table is shown in the window.

> A <- data.frame(Pr = dhyper(0:4, m = 17, n = 233, k = 5))

> rownames(A) <- 0:4

> A

Pr

0 7.011261e-01

1 2.602433e-01

2 3.620776e-02

3 2.351153e-03

4 7.093997e-05

We wanted IP(X = 3), and this is found from the table to be approximately 0.0024. The

value is rounded to the fourth decimal place.

We know from our above discussion that the sample space should be x = 0, 1, 2, 3, 4, 5,

yet, in the table the probabilities are only displayed for x = 1, 2, 3, and 4. What is

happening? As it turns out, the R Commander will only display probabilities that are

0.00005 or greater. Since x = 5 is not shown, it suggests that the outcome has a tiny

probability. To find its exact value we use the dhyper function:

> dhyper(5, m = 17, n = 233, k = 5)

[1] 7.916049e-07

In other words, IP(X = 5) ≈ 0.0000007916049, a small number indeed.

2. Find the probability that there are at most 2 defectives in the sample, that is, compute

IP(X ≤ 2).

Solution: Since IP(X ≤ 2) = IP(X = 0, 1, 2), one way to do this would be to add the 0,

1, and 2 entries in the above table. this gives 0.7011 + 0.2602 + 0.0362 = 0.9975. Our

answer should be correct up to the accuracy of 4 decimal places. However, a more precise

method is provided by the R Commander. Under the Hypergeometric distribution menu

we select Hypergeometric tail probabilities. . . . We fill in the parameters m, n, and k as

before, but in the Variable value(s) dialog box we enter the value 2. We notice that the

Lower tail option is checked, and we leave that alone. Click OK.

> phyper(2, m = 17, n = 233, k = 5)

[1] 0.9975771

And thus IP(X ≤ 2) ≈ 0.9975771. We have confirmed that the above answer was correct

up to four decimal places.
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3. Find IP(X > 1).

The table did not give us the explicit probability IP(X = 5), so we can not use the table to

give us this probability. We need to use another method. Since IP(X > 1) = 1 − IP(X ≤
1) = 1 − FX(1), we can find the probability with Hypergeometric tail probabilities. . . .

We enter 1 for Variable Value(s), we enter the parameters as before, and in this case we

choose the Upper tail option. This results in the following output.

> phyper(1, m = 17, n = 233, k = 5, lower.tail = FALSE)

[1] 0.03863065

In general, the Upper tail option of a tail probabilities dialog computes IP(X > x) for

all given Variable Value(s) x.

4. Generate 100, 000 observations of the random variable X.

We can randomly simulate as many observations of X as we want in R Commander.

Simply choose Simulate hypergeometric variates. . . in the Hypergeometric distribu-

tion dialog.

In the Number of samples dialog, type 1. Enter the parameters as above. Under the

Store Values section, make sure New Data set is selected. Click OK.

A new dialog should open, with the default name Simset1. We could change this if we

like, according to the rules for R object names. In the sample size box, enter 100000.

Click OK.

In the Console Window, R Commander should issue an alert that Simset1 has been

initialized, and in a few seconds, it should also state that 100,000 hypergeometric variates

were stored in hyper.sim1. We can view the sample by clicking the View Data Set

button on the R Commander interface.

We know from our formulas that µ = K ·M/(M +N) = 5 ∗ 17/250 = 0.34. We can check

our formulas using the fact that with repeated observations of X we would expect about

0.34 defectives on the average. To see how our sample reflects the true mean, we can

compute the sample mean

Rcmdr> mean(Simset2$hyper.sim1, na.rm=TRUE)

[1] 0.340344

Rcmdr> sd(Simset2$hyper.sim1, na.rm=TRUE)

[1] 0.5584982

...

We see that when given many independent observations of X, the sample mean is very

close to the true mean µ. We can repeat the same idea and use the sample standard

deviation to estimate the true standard deviation of X. From the output above our estimate

is 0.5584982, and from our formulas we get

σ2 = K
MN

(M + N)2
M + N − K

M + N − 1 ≈ 0.3117896,

with σ =
√
σ2 ≈ 0.5583811944. Our estimate was pretty close.

From the console we can generate random hypergeometric variates with the rhyper

function, as demonstrated below.
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> rhyper(10, m = 17, n = 233, k = 5)

[1] 0 0 0 0 0 2 0 0 0 1

Sampling With and Without Replacement

Suppose that we have a large urn with, say, M white balls and N black balls. We take a sample

of size n from the urn, and let X count the number of white balls in the sample. If we sample

without replacement, then X ∼ hyper(m =M, n = N, k = n) and has mean and variance

µ =n
M

M + N
,

σ2 =n
MN

(M + N)2
M + N − n
M + N − 1 ,

=n
M

M + N

(
1 − M

M + N

)
M + N − n
M + N − 1 .

On the other hand, if we sample

with replacement, then X ∼ binom(size = n, prob = M/(M + N)) with mean and variance

µ =n
M

M + N
,

σ2 =n
M

M + N

(
1 − M

M + N

)
.

We see that both sampling procedures have the same mean, and the method with the larger

variance is the “with replacement” scheme. The factor by which the variances differ,

M + N − n
M + N − 1

, (5.6.4)

is called a finite population correction. For a fixed sample size n, as M,N → ∞ it is clear that

the correction goes to 1, that is, for infinite populations the sampling schemes are essentially

the same with respect to mean and variance.

5.6.2 Waiting Time Distributions

Another important class of problems is associated with the amount of time it takes for a spec-

ified event of interest to occur. For example, we could flip a coin repeatedly until we observe

Heads. We could toss a piece of paper repeatedly until we make it in the trash can.

The Geometric Distribution

Suppose that we conduct Bernoulli trials repeatedly, noting the successes and failures. Let X

be the number of failures before a success. If IP(S ) = p then X has PMF

fX(x) = p(1 − p)x, x = 0, 1, 2, . . . (5.6.5)

(Why?) We say that X has a Geometric distribution and we write X ∼ geom(prob = p).

The associated R functions are dgeom(x, prob), pgeom, qgeom, and rhyper, which give the

PMF, CDF, quantile function, and simulate random variates, respectively.
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Again it is clear that f (x) ≥ 0 and we check that
∑

f (x) = 1 (see Equation E.3.9 in Ap-

pendix E.3):

∞∑

x=0

p(1 − p)x =p

∞∑

x=0

qx = p
1

1 − q = 1.

We will find in the next section that the mean and variance are

µ =
1 − p

p
=

q

p
and σ2 =

q

p2
. (5.6.6)

Example 5.21. The Pittsburgh Steelers place kicker, Jeff Reed, made 81.2% of his attempted

field goals in his career up to 2006. Assuming that his successive field goal attempts are ap-

proximately Bernoulli trials, find the probability that Jeffmisses at least 5 field goals before his

first successful goal.

Solution: If X = the number of missed goals until Jeff’s first success, then X ∼ geom(prob =

0.812) and we want IP(X ≥ 5) = IP(X > 4). We can find this in R with

> pgeom(4, prob = 0.812, lower.tail = FALSE)

[1] 0.0002348493

Note 5.22. Some books use a slightly different definition of the geometric distribution. They

consider Bernoulli trials and let Y count instead the number of trials until a success, so that Y

has PMF

fY(y) = p(1 − p)y−1, y = 1, 2, 3, . . . (5.6.7)

When they say “geometric distribution”, this is what they mean. It is not hard to see that the

two definitions are related. In fact, if X denotes our geometric and Y theirs, then Y = X + 1.

Consequently, they have µY = µX + 1 and σ2
Y
= σ2

X
.

The Negative Binomial Distribution

We may generalize the problem and consider the case where we wait for more than one suc-

cess. Suppose that we conduct Bernoulli trials repeatedly, noting the respective successes and

failures. Let X count the number of failures before r successes. If IP(S ) = p then X has PMF

fX(x) =

(
r + x − 1
r − 1

)
pr(1 − p)x, x = 0, 1, 2, . . . (5.6.8)

We say that X has a Negative Binomial distribution and write X ∼ nbinom(size = r, prob =

p). The associated R functions are dnbinom(x, size, prob), pnbinom, qnbinom, and

rnbinom, which give the PMF, CDF, quantile function, and simulate random variates, respec-

tively.

As usual it should be clear that fX(x) ≥ 0 and the fact that
∑

fX(x) = 1 follows from a

generalization of the geometric series by means of a Maclaurin’s series expansion:

1

1 − t =
∞∑

k=0

tk, for −1 < t < 1, and (5.6.9)

1

(1 − t)r =
∞∑

k=0

(
r + k − 1
r − 1

)
tk, for −1 < t < 1. (5.6.10)
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Therefore
∞∑

x=0

fX(x) = pr
∞∑

x=0

(
r + x − 1
r − 1

)
qx = pr(1 − q)−r = 1, (5.6.11)

since |q| = |1 − p| < 1.

Example 5.23. We flip a coin repeatedly and let X count the number of Tails until we get seven

Heads. What is IP(X = 5)?

Solution: We know that X ∼ nbinom(size = 7, prob = 1/2).

IP(X = 5) = fX(5) =

(
7 + 5 − 1
7 − 1

)
(1/2)7(1/2)5 =

(
11

6

)
2−12

and we can get this in R with

> dnbinom(5, size = 7, prob = 0.5)

[1] 0.1127930

Let us next compute the MGF of X ∼ nbinom(size = r, prob = p).

MX(t) =

∞∑

x=0

etx
(
r + x − 1
r − 1

)
prqx

=pr
∞∑

x=0

(
r + x − 1
r − 1

)
[qet]x

=pr(1 − qet)−r, provided |qet| < 1,

and so

MX(t) =

(
p

1 − qet

)r
, for qet < 1. (5.6.12)

We see that qet < 1 when t < − ln(1 − p).

Let X ∼ nbinom(size = r, prob = p) with M(t) = pr(1 − qet)−r. We proclaimed above the

values of the mean and variance. Now we are equipped with the tools to find these directly.

M′(t) =pr(−r)(1 − qet)−r−1(−qet),
=rqetpr(1 − qet)−r−1,

=
rqet

1 − qetM(t), and so

M′(0) =
rq

1 − q
· 1 = rq

p
.

Thus µ = rq/p. We next find IE X2.

M′′(0) =
rqet(1 − qet) − rqet(−qet)

(1 − qet)2 M(t) +
rqet

1 − qetM
′(t)

∣∣∣∣∣
t=0

,

=
rqp + rq2

p2
· 1 + rq

p

(
rq

p

)
,

=
rq

p2
+

(
rq

p

)2
.

Finally we may say σ2 = M′′(0) − [M′(0)]2 = rq/p2.



5.6. OTHER DISCRETE DISTRIBUTIONS 129

Example 5.24. A random variable has MGF

MX(t) =

(
0.19

1 − 0.81et

)31
.

Then X ∼ nbinom(size = 31, prob = 0.19).

Note 5.25. As with the Geometric distribution, some books use a slightly different definition of

the Negative Binomial distribution. They consider Bernoulli trials and let Y be the number of

trials until r successes, so that Y has PMF

fY(y) =

(
y − 1
r − 1

)
pr(1 − p)y−r, y = r, r + 1, r + 2, . . . (5.6.13)

It is again not hard to see that if X denotes our Negative Binomial and Y theirs, then Y = X + r.

Consequently, they have µY = µX + r and σ
2
Y = σ

2
X.

5.6.3 Arrival Processes

The Poisson Distribution

This is a distribution associated with “rare events”, for reasons which will become clear in a

moment. The events might be:

• traffic accidents,

• typing errors, or

• customers arriving in a bank.

Let λ be the average number of events in the time interval [0, 1]. Let the random variable X

count the number of events occurring in the interval. Then under certain reasonable conditions

it can be shown that

fX(x) = IP(X = x) = e−λ
λx

x!
, x = 0, 1, 2, . . . (5.6.14)

We use the notation X ∼ pois(lambda = λ). The associated R functions are dpois(x,

lambda), ppois, qpois, and rpois, which give the PMF, CDF, quantile function, and simu-

late random variates, respectively.

What are the reasonable conditions? Divide [0, 1] into subintervals of length 1/n. A Pois-

son process satisfies the following conditions:

• the probability of an event occurring in a particular subinterval is ≈ λ/n.

• the probability of two or more events occurring in any subinterval is ≈ 0.

• occurrences in disjoint subintervals are independent.

Remark 5.26. If X counts the number of events in the interval [0, t] and λ is the average number

that occur in unit time, then X ∼ pois(lambda = λt), that is,

IP(X = x) = e−λt
(λt)x

x!
, x = 0, 1, 2, 3 . . . (5.6.15)
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Example 5.27. On the average, five cars arrive at a particular car wash every hour. Let X count

the number of cars that arrive from 10AM to 11AM. Then X ∼ pois(lambda = 5). Also,

µ = σ2 = 5. What is the probability that no car arrives during this period?

Solution: The probability that no car arrives is

IP(X = 0) = e−5
50

0!
= e−5 ≈ 0.0067.

Example 5.28. Suppose the car wash above is in operation from 8AM to 6PM, and we let Y be

the number of customers that appear in this period. Since this period covers a total of 10 hours,

from Remark 5.26 we get that Y ∼ pois(lambda = 5 ∗ 10 = 50). What is the probability that

there are between 48 and 50 customers, inclusive?

Solution: We want IP(48 ≤ Y ≤ 50) = IP(X ≤ 50) − IP(X ≤ 47).

> diff(ppois(c(47, 50), lambda = 50))

[1] 0.1678485

5.7 Functions of Discrete Random Variables

We have built a large catalogue of discrete distributions, but the tools of this section will give

us the ability to consider infinitely many more. Given a random variable X and a given function

h, we may consider Y = h(X). Since the values of X are determined by chance, so are the

values of Y . The question is, what is the PMF of the random variable Y? The answer, of course,

depends on h. In the case that h is one-to-one (see Appendix E.2), the solution can be found by

simple substitution.

Example 5.29. Let X ∼ nbinom(size = r, prob = p). We saw in 5.6 that X represents the

number of failures until r successes in a sequence of Bernoulli trials. Suppose now that instead

we were interested in counting the number of trials (successes and failures) until the rth success

occurs, which we will denote by Y . In a given performance of the experiment, the number of

failures (X) and the number of successes (r) together will comprise the total number of trials

(Y), or in other words, X+ r = Y . We may let h be defined by h(x) = x+ r so that Y = h(X), and

we notice that h is linear and hence one-to-one. Finally, X takes values 0, 1, 2, . . . implying

that the support of Y would be {r, r + 1, r + 2, . . .}. Solving for X we get X = Y − r. Examining

the PMF of X

fX(x) =

(
r + x − 1
r − 1

)
pr(1 − p)x, (5.7.1)

we can substitute x = y − r to get

fY(y) = fX(y − r),

=

(
r + (y − r) − 1

r − 1

)
pr(1 − p)y−r,

=

(
y − 1
r − 1

)
pr(1 − p)y−r, y = r, r + 1, . . .

Even when the function h is not one-to-one, we may still find the PMF of Y simply by

accumulating, for each y, the probability of all the x’s that are mapped to that y.
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Proposition 5.30. Let X be a discrete random variable with PMF fX supported on the set S X.

Let Y = h(X) for some function h. Then Y has PMF fY defined by

fY(y) =
∑

{x∈S X | h(x)=y}
fX(x) (5.7.2)

Example 5.31. Let X ∼ binom(size = 4, prob = 1/2), and let Y = (X − 1)2. Consider the

following table:

x 0 1 2 3 4

fX(x) 1/16 1/4 6/16 1/4 1/16

y = (x − 2)2 1 0 1 4 9

From this we see that Y has support S Y = {0, 1, 4, 9}. We also see that h(x) = (x − 1)2 is

not one-to-one on the support of X, because both x = 0 and x = 2 are mapped by h to y = 1.

Nevertheless, we see that Y = 0 only when X = 1, which has probability 1/4; therefore, fY(0)

should equal 1/4. A similar approach works for y = 4 and y = 9. And Y = 1 exactly when

X = 0 or X = 2, which has total probability 7/16. In summary, the PMF of Y may be written:

y 0 1 4 9

fX(x) 1/4 7/16 1/4 1/16

Note that there is not a special name for the distribution of Y , it is just an example of what

to do when the transformation of a random variable is not one-to-one. The method is the same

for more complicated problems.

Proposition 5.32. If X is a random variable with IE X = µ and Var(X) = σ2, then the mean

and variance of Y = mX + b is

µY = mµ + b, σ2
Y = m2σ2, σY = |m|σ. (5.7.3)
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Chapter Exercises

Exercise 5.1. A recent national study showed that approximately 44.7% of college students

have used Wikipedia as a source in at least one of their term papers. Let X equal the number of

students in a random sample of size n = 31 who have used Wikipedia as a source.

1. How is X distributed?

X ∼ binom(size = 31, prob = 0.447)

2. Sketch the probability mass function (roughly).
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3. Sketch the cumulative distribution function (roughly).

5 10 15 20 25

0
.0

0
.4

0
.8

Binomial Dist’n: Trials = 31, Prob of success = 0.447

Number of Successes

C
u
m

u
la

ti
ve

 P
ro

b
a
b
ili

ty



5.7. FUNCTIONS OF DISCRETE RANDOM VARIABLES 133

4. Find the probability that X is equal to 17.

> dbinom(17, size = 31, prob = 0.447)

[1] 0.07532248

5. Find the probability that X is at most 13.

> pbinom(13, size = 31, prob = 0.447)

[1] 0.451357

6. Find the probability that X is bigger than 11.

> pbinom(11, size = 31, prob = 0.447, lower.tail = FALSE)

[1] 0.8020339

7. Find the probability that X is at least 15.

> pbinom(14, size = 31, prob = 0.447, lower.tail = FALSE)

[1] 0.406024

8. Find the probability that X is between 16 and 19, inclusive.

> sum(dbinom(16:19, size = 31, prob = 0.447))

[1] 0.2544758

> diff(pbinom(c(19, 15), size = 31, prob = 0.447, lower.tail = FALSE))

[1] 0.2544758

9. Give the mean of X, denoted IE X.

> library(distrEx)

> X = Binom(size = 31, prob = 0.447)

> E(X)

[1] 13.857

10. Give the variance of X.

> var(X)

[1] 7.662921
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11. Give the standard deviation of X.

> sd(X)

[1] 2.768198

12. Find IE(4X + 51.324)

> E(4 * X + 51.324)

[1] 106.752

Exercise 5.2. For the following situations, decide what the distribution of X should be. In

nearly every case, there are additional assumptions that should be made for the distribution to

apply; identify those assumptions (which may or may not hold in practice.)

1. We shoot basketballs at a basketball hoop, and count the number of shots until we make

a goal. Let X denote the number of missed shots. On a normal day we would typically

make about 37% of the shots.

2. In a local lottery in which a three digit number is selected randomly, let X be the number

selected.

3. We drop a Styrofoam cup to the floor twenty times, each time recording whether the cup

comes to rest perfectly right side up, or not. Let X be the number of times the cup lands

perfectly right side up.

4. We toss a piece of trash at the garbage can from across the room. If we miss the trash

can, we retrieve the trash and try again, continuing to toss until we make the shot. Let X

denote the number of missed shots.

5. Working for the border patrol, we inspect shipping cargo as when it enters the harbor

looking for contraband. A certain ship comes to port with 557 cargo containers. Stan-

dard practice is to select 10 containers randomly and inspect each one very carefully,

classifying it as either having contraband or not. Let X count the number of containers

that illegally contain contraband.

6. At the same time every year, some migratory birds land in a bush outside for a short rest.

On a certain day, we look outside and let X denote the number of birds in the bush.

7. We count the number of rain drops that fall in a circular area on a sidewalk during a ten

minute period of a thunder storm.

8. We count the number of moth eggs on our window screen.

9. We count the number of blades of grass in a one square foot patch of land.

10. We count the number of pats on a baby’s back until (s)he burps.

Exercise 5.3. Find the constant c so that the given function is a valid PDF of a random variable

X.
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1. f (x) = Cxn, 0 < x < 1.

2. f (x) = Cxe−x, 0 < x < ∞.

3. f (x) = e−(x−C), 7 < x < ∞.

4. f (x) = Cx3(1 − x)2, 0 < x < 1.

5. f (x) = C(1 + x2/4)−1, −∞ < x < ∞.

Exercise 5.4. Show that IE(X − µ)2 = IE X2 − µ2. Hint: expand the quantity (X − µ)2 and

distribute the expectation over the resulting terms.

Exercise 5.5. If X ∼ binom(size = n, prob = p) show that IE X(X − 1) = n(n − 1)p2.

Exercise 5.6. Calculate the mean and variance of the hypergeometric distribution. Show that

µ = K
M

M + N
, σ2 = K

MN

(M + N)2
M + N − K

M + N − 1 . (5.7.4)
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Chapter 6

Continuous Distributions

The focus of the last chapter was on random variables whose support can be written down in

a list of values (finite or countably infinite), such as the number of successes in a sequence of

Bernoulli trials. Now we move to random variables whose support is a whole range of values,

say, an interval (a, b). It is shown in later classes that it is impossible to write all of the numbers

down in a list; there are simply too many of them.

This chapter begins with continuous random variables and the associated PDFs and CDFs

The continuous uniform distribution is highlighted, along with the Gaussian, or normal, distri-

bution. Some mathematical details pave the way for a catalogue of models.

The interested reader who would like to learn more about any of the assorted discrete distri-

butions mentioned below should take a look at Continuous Univariate Distributions, Volumes

1 and 2 by Johnson et al [47, 48].

What do I want them to know?

• how to choose a reasonable continuous model under a variety of physical circumstances

• basic correspondence between continuous versus discrete random variables

• the general tools of the trade for manipulation of continuous random variables, integra-

tion, etc.

• some details on a couple of continuous models, and exposure to a bunch of other ones

• how to make new continuous random variables from old ones

6.1 Continuous Random Variables

6.1.1 Probability Density Functions

Continuous random variables have supports that look like

S X = [a, b] or (a, b), (6.1.1)

or unions of intervals of the above form. Examples of random variables that are often taken to

be continuous are:

• the height or weight of an individual,

137
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• other physical measurements such as the length or size of an object, and

• durations of time (usually).

Every continuous random variable X has a probability density function (PDF) denoted fX asso-

ciated with it1 that satisfies three basic properties:

1. fX(x) > 0 for x ∈ S X,

2.
∫
x∈S X

fX(x) dx = 1, and

3. IP(X ∈ A) =
∫
x∈A fX(x) dx, for an event A ⊂ S X.

Remark 6.1. We can say the following about continuous random variables:

• Usually, the set A in 3 takes the form of an interval, for example, A = [c, d], in which

case

IP(X ∈ A) =
∫ d

c

fX(x) dx. (6.1.2)

• It follows that the probability that X falls in a given interval is simply the area under the

curve of fX over the interval.

• Since the area of a line x = c in the plane is zero, IP(X = c) = 0 for any value c. In

other words, the chance that X equals a particular value c is zero, and this is true for any

number c. Moreover, when a < b all of the following probabilities are the same:

IP(a ≤ X ≤ b) = IP(a < X ≤ b) = IP(a ≤ X < b) = IP(a < X < b). (6.1.3)

• The PDF fX can sometimes be greater than 1. This is in contrast to the discrete case;

every nonzero value of a PMF is a probability which is restricted to lie in the interval

[0, 1].

We met the cumulative distribution function, FX, in Chapter 5. Recall that it is defined by

FX(t) = IP(X ≤ t), for −∞ < t < ∞. While in the discrete case the CDF is unwieldy, in the

continuous case the CDF has a relatively convenient form:

FX(t) = IP(X ≤ t) =

∫ t

−∞
fX(x) dx, −∞ < t < ∞. (6.1.4)

Remark 6.2. For any continuous CDF FX the following are true.

• FX is nondecreasing , that is, t1 ≤ t2 implies FX(t1) ≤ FX(t2).

• FX is continuous (see Appendix E.2). Note the distinction from the discrete case: CDFs

of discrete random variables are not continuous, they are only right continuous.

• limt→−∞ FX(t) = 0 and limt→∞ FX(t) = 1.

There is a handy relationship between the CDF and PDF in the continuous case. Consider

the derivative of FX:

F′X(t) =
d

dt
FX(t) =

d

dt

∫ t

−∞
fX(x) dx = fX(t), (6.1.5)

the last equality being true by the Fundamental Theorem of Calculus, part (2) (see Appendix

E.2). In short, (FX)
′ = fX in the continuous case2.

1Not true. There are pathological random variables with no density function. (This is one of the crazy things

that can happen in the world of measure theory). But in this book we will not get even close to these anomalous

beasts, and regardless it can be proved that the CDF always exists.
2In the discrete case, fX(x) = FX(x) − limt→x− FX(t).
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6.1.2 Expectation of Continuous Random Variables

For a continuous random variable X the expected value of g(X) is

IE g(X) =

∫

x∈S
g(x) fX(x) dx, (6.1.6)

provided the (potentially improper) integral
∫
S
|g(x)| f (x)dx is convergent. One important ex-

ample is the mean µ, also known as IE X:

µ = IE X =

∫

x∈S
x fX(x) dx, (6.1.7)

provided
∫
S
|x| f (x)dx is finite. Also there is the variance

σ2 = IE(X − µ)2 =
∫

x∈S
(x − µ)2 fX(x) dx, (6.1.8)

which can be computed with the alternate formula σ2 = IE X2 − (IE X)2. In addition, there is

the standard deviation σ =
√
σ2. The moment generating function is given by

MX(t) = IE etX =

∫ ∞

−∞
etx fX(x) dx, (6.1.9)

provided the integral exists (is finite) for all t in a neighborhood of t = 0.

Example 6.3. Let the continuous random variable X have PDF

fX(x) = 3x2, 0 ≤ x ≤ 1.

We will see later that fX belongs to the Beta family of distributions. It is easy to see that∫ ∞
−∞ f (x)dx = 1.

∫ ∞

−∞
fX(x)dx =

∫ 1

0

3x2 dx

= x3
∣∣∣1
x=0

= 13 − 03

= 1.

This being said, we may find IP(0.14 ≤ X < 0.71).

IP(0.14 ≤ X < 0.71) =

∫ 0.71

0.14

3x2dx,

= x3
∣∣∣0.71
x=0.14

= 0.713 − 0.143

≈ 0.355167.

We can find the mean and variance in an identical manner.

µ =

∫ ∞

−∞
x fX(x)dx =

∫ 1

0

x · 3x2 dx,

=
3

4
x4|1x=0,

=
3

4
.

It would perhaps be best to calculate the variance with the shortcut formula σ2 = IE X2 − µ2:
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IE X2 =

∫ ∞

−∞
x2 fX(x)dx =

∫ 1

0

x2 · 3x2 dx

=
3

5
x5

∣∣∣∣∣
1

x=0

= 3/5.

which gives σ2 = 3/5 − (3/4)2 = 3/80.

Example 6.4. We will try one with unbounded support to brush up on improper integration.

Let the random variable X have PDF

fX(x) =
3

x4
, x > 1.

We can show that
∫ ∞
−∞ f (x)dx = 1:

∫ ∞

−∞
fX(x)dx =

∫ ∞

1

3

x4
dx

= lim
t→∞

∫ t

1

3

x4
dx

= lim
t→∞

3
1

−3 x
−3

∣∣∣∣∣
t

x=1

= −
(
lim
t→∞

1

t3
− 1

)

= 1.

We calculate IP(3.4 ≤ X < 7.1):

IP(3.4 ≤ X < 7.1) =

∫ 7.1

3.4

3x−4dx

= 3
1

−3 x
−3

∣∣∣∣∣
7.1

x=3.4

= −1(7.1−3 − 3.4−3)
≈ 0.0226487123.

We locate the mean and variance just like before.

µ =

∫ ∞

−∞
x fX(x)dx =

∫ ∞

1

x · 3
x4

dx

= 3
1

−2
x−2

∣∣∣∣∣
∞

x=1

= −3
2

(
lim
t→∞

1

t2
− 1

)

=
3

2
.
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Again we use the shortcut σ2 = IE X2 − µ2:

IE X2 =

∫ ∞

−∞
x2 fX(x)dx =

∫ ∞

1

x2 · 3
x4

dx

= 3
1

−1 x
−1

∣∣∣∣∣
∞

x=1

= −3
(
lim
t→∞

1

t2
− 1

)

= 3,

which closes the example with σ2 = 3 − (3/2)2 = 3/4.

6.1.3 How to do it with R

There exist utilities to calculate probabilities and expectations for general continuous random

variables, but it is better to find a built-in model, if possible. Sometimes it is not possible. We

show how to do it the long way, and the distr package way.

Example 6.5. Let X have PDF f (x) = 3x2, 0 < x < 1 and find IP(0.14 ≤ X ≤ 0.71). (We will

ignore that X is a beta random variable for the sake of argument.)

> f <- function(x) 3 * x^2

> integrate(f, lower = 0.14, upper = 0.71)

0.355167 with absolute error < 3.9e-15

Compare this to the answer we found in Example 6.3. We could integrate the function

x f (x) = 3*x^3 from zero to one to get the mean, and use the shortcut σ2 = IE X2 − (IE X)2 for

the variance.

Example 6.6. Let X have PDF f (x) = 3/x4, x > 1. We may integrate the function x f (x) =

3/x^3 from zero to infinity to get the mean of X.

> g <- function(x) 3/x^3

> integrate(g, lower = 1, upper = Inf)

1.5 with absolute error < 1.7e-14

Compare this to the answer we got in Example 6.4. Use -Inf for −∞.

Example 6.7. Let us redo Example 6.3 with the distr package. The method is similar to

that encountered in Section 5.1.3 in Chapter 5. We define an absolutely continuous random

variable:

> library(distr)

> f <- function(x) 3 * x^2

> X <- AbscontDistribution(d = f, low1 = 0, up1 = 1)

> p(X)(0.71) - p(X)(0.14)

[1] 0.355167
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Compare this answers we found earlier. Now let us try expectation with the distrEx

package [74]:

> library(distrEx)

> E(X)

[1] 0.7496337

> var(X)

[1] 0.03768305

> 3/80

[1] 0.0375

Compare these answers to the ones we found in Example 6.3. Why are they different?

Because the distrEx package resorts to numerical methods when it encounters a model it

does not recognize. This means that the answers we get for calculations may not exactly match

the theoretical values. Be careful.

6.2 The Continuous Uniform Distribution

A random variable X with the continuous uniform distribution on the interval (a, b) has PDF

fX(x) =
1

b − a
, a < x < b. (6.2.1)

The associated R function is dunif(min = a, max = b). We write X ∼ unif(min = a, max = b).

Due to the particularly simple form of this PDF we can also write down explicitly a formula

for the CDF FX:

FX(t) =



0, t < 0,
t−a
b−a , a ≤ t < b,

1, t ≥ b.

(6.2.2)

The continuous uniform distribution is the continuous analogue of the discrete uniform dis-

tribution; it is used to model experiments whose outcome is an interval of numbers that are

“equally likely” in the sense that any two intervals of equal length in the support have the same

probability associated with them.

Example 6.8. Choose a number in [0,1] at random, and let X be the number chosen. Then

X ∼ unif(min = 0, max = 1).

The mean of X ∼ unif(min = a, max = b) is relatively simple to calculate:

µ = IE X =

∫ ∞

−∞
x fX(x) dx,

=

∫ b

a

x
1

b − a dx,

=
1

b − a
x2

2

∣∣∣∣∣∣

b

x=a

,

=
1

b − a
b2 − a2

2
,

=
b + a

2
,
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using the popular formula for the difference of squares. The variance is left to Exercise 6.4.

6.3 The Normal Distribution

We say that X has a normal distribution if it has PDF

fX(x) =
1

σ
√
2π

exp

{
−(x − µ)2

2σ2

}
, −∞ < x < ∞. (6.3.1)

We write X ∼ norm(mean = µ, sd = σ), and the associated R function is dnorm(x, mean =

0, sd = 1).

The familiar bell-shaped curve, the normal distribution is also known as theGaussian distri-

bution because the German mathematician C. F. Gauss largely contributed to its mathematical

development. This distribution is by far the most important distribution, continuous or discrete.

The normal model appears in the theory of all sorts of natural phenomena, from to the way

particles of smoke dissipate in a closed room, to the journey of a bottle in the ocean to the

white noise of cosmic background radiation.

When µ = 0 and σ = 1 we say that the random variable has a standard normal distribution

and we typically write Z ∼ norm(mean = 0, sd = 1). The lowercase Greek letter phi (φ) is

used to denote the standard normal PDF and the capital Greek letter phi Φ is used to denote the

standard normal CDF: for −∞ < z < ∞,

φ(z) =
1
√
2π

e−z
2/2 and Φ(t) =

∫ t

−∞
φ(z) dz. (6.3.2)

Proposition 6.9. If X ∼ norm(mean = µ, sd = σ) then

Z =
X − µ
σ
∼ norm(mean = 0, sd = 1). (6.3.3)

The MGF of Z ∼ norm(mean = 0, sd = 1) is relatively easy to derive:

MZ(t) =

∫ ∞

−∞
etz

1
√
2π

e−z
2/2dz,

=

∫ ∞

−∞

1
√
2π

exp

{
−1
2

(
z2 + 2tz + t2

)
+
t2

2

}
dz,

= et
2/2

(∫ ∞

−∞

1
√
2π

e−[z−(−t)]
2/2dz

)
,

and the quantity in the parentheses is the total area under a norm(mean = −t, sd = 1) density,

which is one. Therefore,

MZ(t) = e−t
2/2, −∞ < t < ∞. (6.3.4)

Example 6.10. The MGF of X ∼ norm(mean = µ, sd = σ) is then not difficult either because

Z =
X − µ
σ
, or rewriting, X = σZ + µ.

Therefore:

MX(t) = IE etX = IE et(σZ+µ) = IE eσtXeµ = etµMZ(σt),

and we know that MZ(t) = et
2/2, thus substituting we get

MX(t) = etµe(σt)
2/2 = exp

{
µt + σ2t2/2

}
,

for −∞ < t < ∞.
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Fact 6.11. The same argument above shows that if X has MGF MX(t) then the MGF of Y =

a + bX is

MY (t) = etaMX(bt). (6.3.5)

Example 6.12. The 68-95-99.7 Rule. We saw in Section 3.3.6 that when an empirical distribu-

tion is approximately bell shaped there are specific proportions of the observations which fall

at varying distances from the (sample) mean. We can see where these come from – and obtain

more precise proportions – with the following:

> pnorm(1:3) - pnorm(-(1:3))

[1] 0.6826895 0.9544997 0.9973002

Example 6.13. Let the random experiment consist of a person taking an IQ test, and let X be

the score on the test. The scores on such a test are typically standardized to have a mean of 100

and a standard deviation of 15. What is IP(85 ≤ X ≤ 115)?

Solution: this one is easy because the limits 85 and 115 fall exactly one standard deviation

(below and above, respectively) from the mean of 100. The answer is therefore approximately

68%.

6.3.1 Normal Quantiles and the Quantile Function

Until now we have been given two values and our task has been to find the area under the PDF

between those values. In this section, we go in reverse: we are given an area, and we would

like to find the value(s) that correspond to that area.

Example 6.14. Assuming the IQ model of Example 6.13, what is the lowest possible IQ score

that a person can have and still be in the top 1% of all IQ scores?

Solution: If a person is in the top 1%, then that means that 99% of the people have lower

IQ scores. So, in other words, we are looking for a value x such that F(x) = IP(X ≤ x)

satisfies F(x) = 0.99, or yet another way to say it is that we would like to solve the equation

F(x)−0.99 = 0. For the sake of argument, let us see how to do this the long way. We define the

function g(x) = F(x) − 0.99, and then look for the root of g with the uniroot function. It uses

numerical procedures to find the root so we need to give it an interval of x values in which to

search for the root. We can get an educated guess from the Empirical Rule 3.13; the root should

be somewhere between two and three standard deviations (15 each) above the mean (which is

100).

> g <- function(x) pnorm(x, mean = 100, sd = 15) - 0.99

> uniroot(g, interval = c(130, 145))

$root

[1] 134.8952

$f.root

[1] -4.873083e-09

$iter

[1] 6

$estim.prec

[1] 6.103516e-05
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The answer is shown in $root which is approximately 134.8952, that is, a person with this

IQ score or higher falls in the top 1% of all IQ scores.

The discussion in example 6.14 was centered on the search for a value x that solved an

equation F(x) = p, for some given probability p, or in mathematical parlance, the search for

F−1, the inverse of the CDF of X, evaluated at p. This is so important that it merits a definition

all its own.

Definition 6.15. The quantile function3 of a random variable X is the inverse of its cumulative

distribution function:

QX(p) = min {x : FX(x) ≥ p} , 0 < p < 1. (6.3.6)

Remark 6.16. Here are some properties of quantile functions:

1. The quantile function is defined and finite for all 0 < p < 1.

2. QX is left-continuous (see Appendix E.2). For discrete random variables it is a step

function, and for continuous random variables it is a continuous function.

3. In the continuous case the graph of QX may be obtained by reflecting the graph of FX

about the line y = x. In the discrete case, before reflecting one should: 1) connect the

dots to get rid of the jumps – this will make the graph look like a set of stairs, 2) erase

the horizontal lines so that only vertical lines remain, and finally 3) swap the open circles

with the solid dots. Please see Figure 5.3.2 for a comparison.

4. The two limits

lim
p→0+

QX(p) and lim
p→1−

QX(p)

always exist, but may be infinite (that is, sometimes limp→0 Q(p) = −∞ and/or limp→1 Q(p) =

∞).

As the reader might expect, the standard normal distribution is a very special case and has

its own special notation.

Definition 6.17. For 0 < α < 1, the symbol zα denotes the unique solution of the equation

IP(Z > zα) = α, where Z ∼ norm(mean = 0, sd = 1). It can be calculated in one of two

equivalent ways: qnorm(1 − α) and qnorm(α, lower.tail = FALSE).

There are a few other very important special cases which we will encounter in later chapters.

6.3.2 How to do it with R

Quantile functions are defined for all of the base distributions with the q prefix to the distribu-

tion name, except for the ECDF whose quantile function is exactly the Qx(p) =quantile(x,

probs = p , type = 1) function.

Example 6.18. Back to Example 6.14, we are looking for QX(0.99), where X ∼ norm(mean =

100, sd = 15). It could not be easier to do with R.

> qnorm(0.99, mean = 100, sd = 15)

3The precise definition of the quantile function is QX(p) = inf {x : FX(x) ≥ p}, so at least it is well defined

(though perhaps infinite) for the values p = 0 and p = 1.



146 CHAPTER 6. CONTINUOUS DISTRIBUTIONS

[1] 134.8952

Compare this answer to the one obtained earlier with uniroot.

Example 6.19. Find the values z0.025, z0.01, and z0.005 (these will play an important role from

Chapter 9 onward).

> qnorm(c(0.025, 0.01, 0.005), lower.tail = FALSE)

[1] 1.959964 2.326348 2.575829

Note the lower.tail argument. We would get the same answer with

qnorm(c(0.975, 0.99, 0.995))

6.4 Functions of Continuous Random Variables

The goal of this section is to determine the distribution of U = g(X) based on the distribution

of X. In the discrete case all we needed to do was back substitute for x = g−1(u) in the PMF of

X (sometimes accumulating probability mass along the way). In the continuous case, however,

we need more sophisticated tools. Now would be a good time to review Appendix E.2.

6.4.1 The PDF Method

Proposition 6.20. Let X have PDF fX and let g be a function which is one-to-one with a

differentiable inverse g−1. Then the PDF of U = g(X) is given by

fU(u) = fX
[
g−1(u)

] ∣∣∣∣∣
d

du
g−1(u)

∣∣∣∣∣ . (6.4.1)

Remark 6.21. The formula in Equation 6.4.1 is nice, but does not really make any sense. It is

better to write in the intuitive form

fU(u) = fX(x)

∣∣∣∣∣
dx

du

∣∣∣∣∣ . (6.4.2)

Example 6.22. Let X ∼ norm(mean = µ, sd = σ), and let Y = eX. What is the PDF of Y?

Solution: Notice first that ex > 0 for any x, so the support of Y is (0,∞). Since the transfor-
mation is monotone, we can solve y = ex for x to get x = ln y, giving dx/dy = 1/y. Therefore,

for any y > 0,

fY(y) = fX(ln y) ·
∣∣∣∣∣
1

y

∣∣∣∣∣ =
1

σ
√
2π

exp

{
(ln y − µ)2

2σ2

}
· 1
y
,

where we have dropped the absolute value bars since y > 0. The random variable Y is said to

have a lognormal distribution; see Section 6.5.

Example 6.23. Suppose X ∼ norm(mean = 0, sd = 1) and let Y = 4− 3X. What is the PDF of

Y?
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The support of X is (−∞,∞), and as x goes from −∞ to ∞, the quantity y = 4 − 3x also

traverses (−∞,∞). Solving for x in the equation y = 4 − 3x yields x = −(y − 4)/3 giving

dx/dy = −1/3. And since

fX(x) =
1
√
2π

e−x
2/2, −∞ < x < ∞,

we have

fY(y) = fX

(
y − 4
3

)
·
∣∣∣∣∣−
1

3

∣∣∣∣∣ , −∞ < y < ∞,

=
1

3
√
2π

e−(y−4)
2/2·32 , −∞ < y < ∞.

We recognize the PDF of Y to be that of a norm(mean = 4, sd = 3) distribution. Indeed, we

may use an identical argument as the above to prove the following fact:

Fact 6.24. If X ∼ norm(mean = µ, sd = σ) and if Y = a + bX for constants a and b, with

b , 0, then Y ∼ norm(mean = a + bµ, sd = |b|σ).

Note that it is sometimes easier to postpone solving for the inverse transformation x = x(u).

Instead, leave the transformation in the form u = u(x) and calculate the derivative of the original

transformation

du/dx = g′(x). (6.4.3)

Once this is known, we can get the PDF of U with

fU(u) = fX(x)

∣∣∣∣∣
1

du/dx

∣∣∣∣∣ . (6.4.4)

In many cases there are cancellations and the work is shorter. Of course, it is not always true

that
dx

du
=

1

du/dx
, (6.4.5)

but for the well-behaved examples in this book the trick works just fine.

Remark 6.25. In the case that g is not monotone we cannot apply Proposition 6.20 directly.

However, hope is not lost. Rather, we break the support of X into pieces such that g is monotone

on each one. We apply Proposition 6.20 on each piece, and finish up by adding the results

together.

6.4.2 The CDF method

We know from Section 6.1 that fX = F′
X
in the continuous case. Starting from the equation

FY(y) = IP(Y ≤ y), we may substitute g(X) for Y , then solve for X to obtain IP[X ≤ g−1(y)],

which is just another way to write FX[g
−1(y)]. Differentiating this last quantity with respect to

y will yield the PDF of Y .

Example 6.26. Suppose X ∼ unif(min = 0, max = 1) and suppose that we let Y = − ln X.

What is the PDF of Y?

The support set of X is (0, 1), and y traverses (0,∞) as x ranges from 0 to 1, so the support

set of Y is S Y = (0,∞). For any y > 0, we consider

FY(y) = IP(Y ≤ y) = IP(− ln X ≤ y) = IP(X ≥ e−y) = 1 − IP(X < e−y),
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where the next to last equality follows because the exponential function is monotone (this point

will be revisited later). Now since X is continuous the two probabilities IP(X < e−y) and

IP(X ≤ e−y) are equal; thus

1 − IP(X < e−y) = 1 − IP(X ≤ e−y) = 1 − FX(e
−y).

Now recalling that the CDF of a unif(min = 0, max = 1) random variable satisfies F(u) = u

(see Equation 6.2.2), we can say

FY(y) = 1 − FX(e
−y) = 1 − e−y, for y > 0.

We have consequently found the formula for the CDF of Y; to obtain the PDF fY we need only

differentiate FY :

fY(y) =
d

dy

(
1 − e−y) = 0 − e−y(−1),

or fY(y) = e−y for y > 0. This turns out to be a member of the exponential family of distribu-

tions, see Section 6.5.

Example 6.27. The Probability Integral Transform. Given a continuous random variable X

with strictly increasing CDF FX, let the random variable Y be defined by Y = FX(X). Then the

distribution of Y is unif(min = 0, max = 1).

Proof. We employ the CDF method. First note that the support of Y is (0, 1). Then for any

0 < y < 1,

FY(y) = IP(Y ≤ y) = IP(FX(X) ≤ y).

Now since FX is strictly increasing, it has a well defined inverse function F−1
X
. Therefore,

IP(FX(X) ≤ y) = IP(X ≤ F−1X (y)) = FX[F
−1
X (y)] = y.

Summarizing, we have seen that FY(y) = y, 0 < y < 1. But this is exactly the CDF of a

unif(min = 0, max = 1) random variable. �

Fact 6.28. The Probability Integral Transform is true for all continuous random variables with

continuous CDFs, not just for those with strictly increasing CDFs (but the proof is more com-

plicated). The transform is not true for discrete random variables, or for continuous random

variables having a discrete component (that is, with jumps in their CDF).

Example 6.29. Let Z ∼ norm(mean = 0, sd = 1) and let U = Z2. What is the PDF of U?

Notice first that Z2 ≥ 0, and thus the support of U is [0,∞). And for any u ≥ 0,

FU(u) = IP(U ≤ u) = IP(Z2 ≤ u).

But Z2 ≤ u occurs if and only if −
√
u ≤ Z ≤

√
u. The last probability above is simply the area

under the standard normal PDF from −
√
u to
√
u, and since φ is symmetric about 0, we have

IP(Z2 ≤ u) = 2 IP(0 ≤ Z ≤
√
u) = 2

[
FZ(
√
u) − FZ(0)

]
= 2Φ(

√
u) − 1,

because Φ(0) = 1/2. To find the PDF of U we differentiate the CDF recalling that Φ′ = φ.

fU(u) =
(
2Φ(
√
u) − 1

)′
= 2φ(

√
u) · 1

2
√
u
= u−1/2φ(

√
u).

Substituting,

fU(u) = u−1/2
1
√
2π

e−(
√
u)2/2 = (2πu)−1/2e−u, u > 0.

This is what we will later call a chi-square distribution with 1 degree of freedom. See Section

6.5.
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6.4.3 How to do it with R

The distr package has functionality to investigate transformations of univariate distributions.

There are exact results for ordinary transformations of the standard distributions, and distr

takes advantage of these in many cases. For instance, the distr package can handle the trans-

formation in Example 6.23 quite nicely:

> library(distr)

> X <- Norm(mean = 0, sd = 1)

> Y <- 4 - 3 * X

> Y

Distribution Object of Class: Norm

mean: 4

sd: 3

So distr “knows” that a linear transformation of a normal random variable is again normal,

and it even knows what the correct mean and sd should be. But it is impossible for distr to

know everything, and it is not long before we venture outside of the transformations that distr

recognizes. Let us try Example 6.22:

> Y <- exp(X)

> Y

Distribution Object of Class: AbscontDistribution

The result is an object of class AbscontDistribution, which is one of the classes that

distr uses to denote general distributions that it does not recognize (it turns out that Z has a

lognormal distribution; see Section 6.5). A simplified description of the process that distr

undergoes when it encounters a transformation Y = g(X) that it does not recognize is

1. Randomly generate many, many copies X1, X2, . . . , Xn from the distribution of X,

2. Compute Y1 = g(X1), Y2 = g(X2), . . . , Yn = g(Xn) and store them for use.

3. Calculate the PDF, CDF, quantiles, and random variates using the simulated values of Y .

As long as the transformation is sufficiently nice, such as a linear transformation, the expo-

nential, absolute value, etc., the d-p-q functions are calculated analytically based on the d-p-q

functions associated with X. But if we try a crazy transformation then we are greeted by a

warning:

> W <- sin(exp(X) + 27)

> W

Distribution Object of Class: AbscontDistribution

The warning confirms that the d-p-q functions are not calculated analytically, but are instead

based on the randomly simulated values of Y . We must be careful to remember this. The nature

of random simulationmeans that we can get different answers to the same question: watch what

happens when we compute IP(W ≤ 0.5) using theW above, then define W again, and compute

the (supposedly) same IP(W ≤ 0.5) a few moments later.
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> p(W)(0.5)

[1] 0.57988

> W <- sin(exp(X) + 27)

> p(W)(0.5)

[1] 0.5804

The answers are not the same! Furthermore, if we were to repeat the process we would get

yet another answer for IP(W ≤ 0.5).

The answers were close, though. And the underlying randomly generated X’s were not the

same so it should hardly be a surprise that the calculated W’s were not the same, either. This

serves as a warning (in concert with the one that distr provides) that we should be careful

to remember that complicated transformations computed by R are only approximate and may

fluctuate slightly due to the nature of the way the estimates are calculated.

6.5 Other Continuous Distributions

6.5.1 Waiting Time Distributions

In some experiments, the random variable being measured is the time until a certain event

occurs. For example, a quality control specialist may be testing a manufactured product to see

how long it takes until it fails. An efficiency expert may be recording the customer traffic at a

retail store to streamline scheduling of staff.

The Exponential Distribution

We say that X has an exponential distribution and write X ∼ exp(rate = λ).

fX(x) = λe
−λx, x > 0 (6.5.1)

The associated R functions are dexp(x, rate = 1), pexp, qexp, and rexp, which give the

PDF, CDF, quantile function, and simulate random variates, respectively.

The parameter λ measures the rate of arrivals (to be described later) and must be positive.

The CDF is given by the formula

FX(t) = 1 − e−λt, t > 0. (6.5.2)

The mean is µ = 1/λ and the variance is σ2 = 1/λ2.

The exponential distribution is closely related to the Poisson distribution. If customers

arrive at a store according to a Poisson process with rate λ and if Y counts the number of cus-

tomers that arrive in the time interval [0, t), then we saw in Section 5.6 that Y ∼ pois(lambda =

λt). Now consider a different question: let us start our clock at time 0 and stop the clock

when the first customer arrives. Let X be the length of this random time interval. Then

X ∼ exp(rate = λ). Observe the following string of equalities:

IP(X > t) = IP(first arrival after time t),

= IP(no events in [0,t)),

= IP(Y = 0),

= e−λt,
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where the last line is the PMF of Y evaluated at y = 0. In other words, IP(X ≤ t) = 1 − e−λt,

which is exactly the CDF of an exp(rate = λ) distribution.

The exponential distribution is said to bememoryless because exponential random variables

"forget" how old they are at every instant. That is, the probability that we must wait an addi-

tional five hours for a customer to arrive, given that we have already waited seven hours, is

exactly the probability that we needed to wait five hours for a customer in the first place. In

mathematical symbols, for any s, t > 0,

IP(X > s + t | X > t) = IP(X > s). (6.5.3)

See Exercise 6.5.

The Gamma Distribution

This is a generalization of the exponential distribution. We say that X has a gamma distribution

and write X ∼ gamma(shape = α, rate = λ). It has PDF

fX(x) =
λα

Γ(α)
xα−1e−λx, x > 0. (6.5.4)

The associatedR functions are dgamma(x, shape, rate = 1), pgamma, qgamma, and rgamma,

which give the PDF, CDF, quantile function, and simulate random variates, respectively. If

α = 1 then X ∼ exp(rate = λ). The mean is µ = α/λ and the variance is σ2 = α/λ2.

To motivate the gamma distribution recall that if X measures the length of time until the

first event occurs in a Poisson process with rate λ then X ∼ exp(rate = λ). If we let Y measure

the length of time until the αth event occurs then Y ∼ gamma(shape = α, rate = λ). When α

is an integer this distribution is also known as the Erlang distribution.

Example 6.30. At a car wash, two customers arrive per hour on the average. We decide to

measure how long it takes until the third customer arrives. If Y denotes this random time then

Y ∼ gamma(shape = 3, rate = 1/2).

6.5.2 The Chi square, Student’s t, and Snedecor’s F Distributions

The Chi square Distribution

A random variable X with PDF

fX(x) =
1

Γ(p/2)2p/2
xp/2−1e−x/2, x > 0, (6.5.5)

is said to have a chi-square distribution with p degrees of freedom. We write X ∼ chisq(df =

p). The associated R functions are dchisq(x, df), pchisq, qchisq, and rchisq, which

give the PDF, CDF, quantile function, and simulate random variates, respectively. See Figure

6.5.1. In an obvious notation we may define χ2α(p) as the number on the x-axis such that there

is exactly α area under the chisq(df = p) curve to its right.

The code to produce Figure 6.5.1 is

> curve(dchisq(x, df = 3), from = 0, to = 20, ylab = "y")

> ind <- c(4, 5, 10, 15)

> for (i in ind) curve(dchisq(x, df = i), 0, 20, add = TRUE)
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Figure 6.5.1: Chi square distribution for various degrees of freedom

Remark 6.31. Here are some useful things to know about the chi-square distribution.

1. If Z ∼ norm(mean = 0, sd = 1), then Z2 ∼ chisq(df = 1). We saw this in Example

6.29, and the fact is important when it comes time to find the distribution of the sample

variance, S 2. See Theorem 8.5 in Section 8.2.2.

2. The chi-square distribution is supported on the positive x-axis, with a right-skewed dis-

tribution.

3. The chisq(df = p) distribution is the same as a gamma(shape = p/2, rate = 1/2)

distribution.

4. The MGF of X ∼ chisq(df = p) is

MX(t) = (1 − 2t)−p , t < 1/2. (6.5.6)

Student’s t distribution

A random variable X with PDF

fX(x) =
Γ [(r + 1)/2]
√
rπ Γ(r/2)

(
1 +

x2

r

)−(r+1)/2
, −∞ < x < ∞ (6.5.7)

is said to have Student’s t distribution with r degrees of freedom, and we write X ∼ t(df = r).

The associated R functions are dt, pt, qt, and rt, which give the PDF, CDF, quantile function,

and simulate random variates, respectively. See Section 8.2.
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Snedecor’s F distribution

A random variable X with p.d.f.

fX(x) =
Γ[(m + n)/2]

Γ(m/2)Γ(n/2)

(
m

n

)m/2
xm/2−1

(
1 +

m

n
x

)−(m+n)/2
, x > 0. (6.5.8)

is said to have an F distribution with (m, n) degrees of freedom. We write X ∼ f(df1 =

m, df2 = n). The associated R functions are df(x, df1, df2), pf, qf, and rf, which

give the PDF, CDF, quantile function, and simulate random variates, respectively. We de-

fine Fα(m, n) as the number on the x-axis such that there is exactly α area under the f(df1 =

m, df2 = n) curve to its right.

Remark 6.32. Here are some notes about the F distribution.

1. If X ∼ f(df1 = m, df2 = n) and Y = 1/X, then Y ∼ f(df1 = n, df2 = m). Historically,

this fact was especially convenient. In the old days, statisticians used printed tables for

their statistical calculations. Since the F tables were symmetric in m and n, it meant that

publishers could cut the size of their printed tables in half. It plays less of a role today

now that personal computers are widespread.

2. If X ∼ t(df = r), then X2 ∼ f(df1 = 1, df2 = r). We will see this again in Section 11.3.3.

6.5.3 Other Popular Distributions

The Cauchy Distribution

This is a special case of the Student’s t distribution. It has PDF

fX(x) =
1

βπ

1 +
(
x − m
β

)2
−1

, −∞ < x < ∞ (6.5.9)

We write X ∼ cauchy(location = m, scale = β). The associatedR function is dcauchy(x,

location = 0, scale = 1).

It is easy to see that a cauchy(location = 0, scale = 1) distribution is the same as a

t(df = 1) distribution. The cauchy distribution looks like a norm distribution but with very

heavy tails. The mean (and variance) do not exist, that is, they are infinite. The median is

represented by the location parameter, and the scale parameter influences the spread of the

distribution about its median.

The Beta Distribution

This is a generalization of the continuous uniform distribution.

fX(x) =
Γ(α + β)

Γ(α)Γ(β)
xα−1(1 − x)β−1, 0 < x < 1 (6.5.10)

We write X ∼ beta(shape1 = α, shape2 = β). The associated R function is dbeta(x,

shape1, shape2). The mean and variance are

µ =
α

α + β
and σ2 =

αβ

(α + β)2 (α + β + 1)
. (6.5.11)

See Example 6.3. This distribution comes up a lot in Bayesian statistics because it is a good

model for one’s prior beliefs about a population proportion p, 0 ≤ p ≤ 1.
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The Logistic Distribution

fX(x) =
1

σ
exp

(
− x − µ
σ

) [
1 + exp

(
− x − µ
σ

)]−2
, −∞ < x < ∞. (6.5.12)

We write X ∼ logis(location = µ, scale = σ). The associated R function is dlogis(x,

location = 0, scale = 1). The logistic distribution comes up in differential equations as

a model for population growth under certain assumptions. The mean is µ and the variance is

π2σ2/3.

The Lognormal Distribution

This is a distribution derived from the normal distribution (hence the name). IfU ∼ norm(mean =
µ, sd = σ), then X = eUhas PDF

fX(x) =
1

σx
√
2π

exp

[
−(ln x − µ)2

2σ2

]
, 0 < x < ∞. (6.5.13)

We write X ∼ lnorm(meanlog = µ, sdlog = σ). The associated R function is dlnorm(x,

meanlog = 0, sdlog = 1). Notice that the support is concentrated on the positive x axis;

the distribution is right-skewed with a heavy tail. See Example 6.22.

The Weibull Distribution

This has PDF

fX(x) =
α

β

(
x

β

)α−1
exp

(
x

β

)α
, x > 0. (6.5.14)

We write X ∼ weibull(shape = α, scale = β). The associated R function is dweibull(x,

shape, scale = 1).

6.5.4 How to do it with R

There is some support of moments and moment generating functions for some continuous prob-

ability distributions included in the actuar package [25]. The convention is m in front of the

distribution name for raw moments, and mgf in front of the distribution name for the moment

generating function. At the time of this writing, the following distributions are supported:

gamma, inverse Gaussian, (non-central) chi-squared, exponential, and uniform.

Example 6.33. Calculate the first four raw moments for X ∼ gamma(shape = 13, rate = 1)

and plot the moment generating function.

We load the actuar package and use the functions mgamma and mgfgamma:

> library(actuar)

> mgamma(1:4, shape = 13, rate = 1)

[1] 13 182 2730 43680

For the plot we can use the function in the following form:

> plot(function(x) {

+ mgfgamma(x, shape = 13, rate = 1)

+ }, from = -0.1, to = 0.1, ylab = "gamma mgf")
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Figure 6.5.2: Plot of the gamma(shape = 13, rate = 1) MGF

Chapter Exercises

Exercise 6.1. Find the constant c so that the given function is a valid PDF of a random variable

X.

1. f (x) = Cxn, 0 < x < 1.

2. f (x) = Cxe−x, 0 < x < ∞.

3. f (x) = e−(x−C), 7 < x < ∞.

4. f (x) = Cx3(1 − x)2, 0 < x < 1.

5. f (x) = C(1 + x2/4)−1, −∞ < x < ∞.

Exercise 6.2. For the following random experiments, decide what the distribution of X should

be. In nearly every case, there are additional assumptions that should be made for the distribu-

tion to apply; identify those assumptions (which may or may not strictly hold in practice).

1. We throw a dart at a dart board. Let X denote the squared linear distance from the bulls-

eye to the where the dart landed.

2. We randomly choose a textbook from the shelf at the bookstore and let P denote the

proportion of the total pages of the book devoted to exercises.

3. We measure the time it takes for the water to completely drain out of the kitchen sink.
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4. We randomly sample strangers at the grocery store and ask them how long it will take

them to drive home.

Exercise 6.3. If Z is norm(mean = 0, sd = 1), find

1. IP(Z > 2.64)

> pnorm(2.64, lower.tail = FALSE)

[1] 0.004145301

2. IP(0 ≤ Z < 0.87)

> pnorm(0.87) - 1/2

[1] 0.3078498

3. IP(|Z| > 1.39) (Hint: draw a picture!)

> 2 * pnorm(-1.39)

[1] 0.1645289

Exercise 6.4. Calculate the variance of X ∼ unif(min = a, max = b). Hint: First calculate

IE X2.

type the exercise here

Exercise 6.5. Prove the memoryless property for exponential random variables. That is, for

X ∼ exp(rate = λ) show that for any s, t > 0,

IP(X > s + t | X > t) = IP(X > s).



Chapter 7

Multivariate Distributions

We have built up quite a catalogue of distributions, discrete and continuous. They were all

univariate, however, meaning that we only considered one random variable at a time. We can

imagine nevertheless many random variables associated with a single person: their height, their

weight, their wrist circumference (all continuous), or their eye/hair color, shoe size, whether

they are right handed, left handed, or ambidextrous (all categorical), and we can even surmise

reasonable probability distributions to associate with each of these variables.

But there is a difference: for a single person, these variables are related. For instance, a

person’s height betrays a lot of information about that person’s weight.

The concept we are hinting at is the notion of dependence between random variables. It is

the focus of this chapter to study this concept in some detail. Along the way, we will pick up ad-

ditional models to add to our catalogue. Moreover, we will study certain classes of dependence,

and clarify the special case when there is no dependence, namely, independence.

The interested reader who would like to learn more about any of the below mentioned

multivariate distributions should take a look at Discrete Multivariate Distributions by Johnson

et al [49] or Continuous Multivariate Distributions [54] by Kotz et al.

What do I want them to know?

• the basic notion of dependence and how it is manifested with multiple variables (two, in

particular)

• joint versus marginal distributions/expectation (discrete and continuous)

• some numeric measures of dependence

• conditional distributions, in the context of independence and exchangeability

• some details of at least one multivariate model (discrete and continuous)

• what it looks like when there are more than two random variables present

7.1 Joint and Marginal Probability Distributions

Consider two discrete random variables X and Y with PMFs fX and fY that are supported on the

sample spaces S X and S Y , respectively. Let S X,Y denote the set of all possible observed pairs

157
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(x, y), called the joint support set of X and Y . Then the joint probability mass function of X and

Y is the function fX,Y defined by

fX,Y(x, y) = IP(X = x, Y = y), for (x, y) ∈ S X,Y . (7.1.1)

Every joint PMF satisfies

fX,Y(x, y) > 0 for all (x, y) ∈ S X,Y , (7.1.2)

and ∑

(x,y)∈S X,Y

fX,Y(x, y) = 1. (7.1.3)

It is customary to extend the function fX,Y to be defined on all of R
2 by setting fX,Y(x, y) = 0 for

(x, y) < S X,Y .

In the context of this chapter, the PMFs fX and fY are called the marginal PMFs of X and

Y , respectively. If we are given only the joint PMF then we may recover each of the marginal

PMFs by using the Theorem of Total Probability (see Equation4.4.5): observe

fX(x) = IP(X = x), (7.1.4)

=
∑

y∈S Y

IP(X = x, Y = y), (7.1.5)

=
∑

y∈S Y

fX,Y(x, y). (7.1.6)

By interchanging the roles of X and Y it is clear that

fY(y) =
∑

x∈S Y

fX,Y(x, y). (7.1.7)

Given the joint PMF we may recover the marginal PMFs, but the converse is not true. Even if

we have both marginal distributions they are not sufficient to determine the joint PMF; more

information is needed1.

Associated with the joint PMF is the joint cumulative distribution function FX,Y defined by

FX,Y(x, y) = IP(X ≤ x, Y ≤ y), for (x, y) ∈ R2.

The bivariate joint CDF is not quite as tractable as the univariate CDFs, but in principle we

could calculate it by adding up quantities of the form in Equation 7.1.1. The joint CDF is

typically not used in practice due to its inconvenient form; one can usually get by with the joint

PMF alone.

We now introduce some examples of bivariate discrete distributions. The first we have seen

before, and the second is based on the first.

Example 7.1. Roll a fair die twice. Let X be the face shown on the first roll, and let Y be the

face shown on the second roll. We have already seen this example in Chapter 4, Example 4.30.

For this example, it suffices to define

fX,Y(x, y) =
1

36
, x = 1, . . . , 6, y = 1, . . . , 6.

1We are not at a total loss, however. There are Frechet bounds which pose limits on how large (and small) the

joint distribution must be at each point.
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The marginal PMFs are given by fX(x) = 1/6, x = 1, 2, . . . , 6, and fY(y) = 1/6, y = 1, 2, . . . , 6,

since

fX(x) =

6∑

y=1

1

36
=

1

6
, x = 1, . . . , 6,

and the same computation with the letters switched works for Y .

In the previous example, and in many other ones, the joint support can be written as a

product set of the support of X “times” the support of Y , that is, it may be represented as a

cartesian product set, or rectangle, S X,Y = S X × S Y , where S X × S Y = {(x, y) : x ∈ S X, y ∈ S Y}.
As we shall see presently in Section 7.4, this form is a necessary condition for X and Y to be

independent (or alternatively exchangeable when S X = S Y). But please note that in general it

is not required for S X,Y to be of rectangle form. We next investigate just such an example.

Example 7.2. Let the random experiment again be to roll a fair die twice, except now let us

define the random variables U and V by

U = the maximum of the two rolls, and

V = the sum of the two rolls.

We see that the support of U is S U = {1, 2, . . . , 6} and the support of V is S V = {2, 3, . . . , 12}.
We may represent the sample space with a matrix, and for each entry in the matrix we may

calculate the value that U assumes. The result is in the left half of Table 7.1.

We can use the table to calculate the marginal PMF of U, because from Example 4.30 we

know that each entry in the matrix has probability 1/36 associated with it. For instance, there

is only one outcome in the matrix with U = 1, namely, the top left corner. This single entry has

probability 1/36, therefore, it must be that fU(1) = IP(U = 1) = 1/36. Similarly we see that

there are three entries in the matrix with U = 2, thus fU(2) = 3/36. Continuing in this fashion

we will find the marginal distribution of U may be written

fU(u) =
2u − 1
36
, u = 1, 2, . . . , 6. (7.1.8)

We may do a similar thing for V; see the right half of Table 7.1. Collecting all of the

probability we will find that the marginal PMF of V is

fV(v) =
6 − |v − 7|

36
, v = 2, 3, . . . , 12. (7.1.9)

We may collapse the two matrices from Table 7.1 into one, big matrix of pairs of values

(u, v). The result is shown in Table 7.2.

Again, each of these pairs has probability 1/36 associated with it and we are looking at

the joint PDF of (U,V) albeit in an unusual form. Many of the pairs are repeated, but some of

them are not: (1, 2) appears twice, but (2, 3) appears only once. We can make more sense out

of this by writing a new table with U on one side and V along the top. We will accumulate the

probability just like we did in Example 7.1. See Table 7.3.

The joint support of (U,V) is concentrated along the main diagonal; note that the nonzero

entries do not form a rectangle. Also notice that if we form row and column totals we are doing

exactly the same thing as Equation 7.1.7, so that the marginal distribution of U is the list of

totals in the right “margin” of the Table 7.3, and the marginal distribution of V is the list of

totals in the bottom “margin”.
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U 1 2 3 4 5 6

1 1 2 3 4 5 6

2 2 2 3 4 5 6

3 3 3 3 4 5 6

4 4 4 4 4 5 6

5 5 5 5 5 5 6

6 6 6 6 6 6 6

(a) U = max(X, Y)

V 1 2 3 4 5 6

1 2 3 4 5 6 7

2 3 4 5 6 7 8

3 4 5 6 7 8 9

4 5 6 7 8 9 10

5 6 7 8 9 10 11

6 7 8 9 10 11 12

(b) V = X + Y

Table 7.1: Maximum U and sum V of a pair of dice rolls (X, Y)

(U,V) 1 2 3 4 5 6

1 (1,2) (2,3) (3,4) (4,5) (5,6) (6,7)

2 (2,3) (2,4) (3,5) (4,6) (5,7) (6,8)

3 (3,4) (3,5) (3,6) (4,7) (5,8) (6,9)

4 (4,5) (4,6) (4,7) (4,8) (5,9) (6,10)

5 (5,6) (5,7) (5,8) (5,9) (5,10) (6,11)

6 (6,7) (6,8) (6,9) (6,10) (6,11) (6,12)

Table 7.2: Joint values of U = max(X, Y) and V = X + Y

2 3 4 5 6 7 8 9 10 11 12 Total

1 1/36 1/36

2 2/36 1/36 3/36

3 2/36 2/36 1/36 5/36

4 2/36 2/36 2/36 1/36 7/36

5 2/36 2/36 2/36 2/36 1/36 9/36

6 2/36 2/36 2/36 2/36 2/36 1/36 11/36

Total 1/36 2/36 3/36 4/36 5/36 6/36 5/36 4/36 3/36 2/36 1/36 1

Table 7.3: The joint PMF of (U,V)

The outcomes of U are along the left and the outcomes of V are along the top. Empty entries in the table

have zero probability. The row totals (on the right) and column totals (on the bottom) correspond to the

marginal distribution of U and V , respectively.
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Continuing the reasoning for the discrete case, given two continuous random variables X

and Y there similarly exists2 a function fX,Y(x, y) associated with X and Y called the joint prob-

ability density function of X and Y . Every joint PDF satisfies

fX,Y(x, y) ≥ 0 for all (x, y) ∈ S X,Y , (7.1.10)

and "

S X,Y

fX,Y(x, y) dx dy = 1. (7.1.11)

In the continuous case there is not such a simple interpretation for the joint PDF; however,

we do have one for the joint CDF, namely,

FX,Y(x, y) = IP(X ≤ x, Y ≤ y) =

∫ x

−∞

∫ y

−∞
fX,Y(u, v) dv du,

for (x, y) ∈ R2. If X and Y have the joint PDF fX,Y , then the marginal density of X may be

recovered by

fX(x) =

∫

S Y

fX,Y(x, y) dy, x ∈ S X (7.1.12)

and the marginal PDF of Y may be found with

fY(y) =

∫

S X

fX,Y(x, y) dx, y ∈ S Y . (7.1.13)

Example 7.3. Let the joint PDF of (X, Y) be given by

fX,Y(x, y) =
6

5

(
x + y2

)
, 0 < x < 1, 0 < y < 1.

The marginal PDF of X is

fX(x) =

∫ 1

0

6

5

(
x + y2

)
dy,

=
6

5

(
xy +

y3

3

)∣∣∣∣∣∣
1

y=0

,

=
6

5

(
x +

1

3

)
,

for 0 < x < 1, and the marginal PDF of Y is

fY(y) =

∫ 1

0

6

5

(
x + y2

)
dx,

=
6

5

(
x2

2
+ xy2

)∣∣∣∣∣∣
1

x=0

,

=
6

5

(
1

2
+ y2

)
,

for 0 < y < 1. In this example the joint support set was a rectangle [0, 1] × [0, 1], but it turns

out that X and Y are not independent. See Section 7.4.

2Strictly speaking, the joint density function does not necessarily exist. But the joint CDF always exists.
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7.1.1 How to do it with R

We will show how to do Example 7.2 using R; it is much simpler to do it with R than without.

First we set up the sample space with the rolldie function. Next, we add random variables U

and V with the addrv function. We take a look at the very top of the data frame (probability

space) to make sure that everything is operating according to plan.

> S <- rolldie(2, makespace = TRUE)

> S <- addrv(S, FUN = max, invars = c("X1", "X2"), name = "U")

> S <- addrv(S, FUN = sum, invars = c("X1", "X2"), name = "V")

> head(S)

X1 X2 U V probs

1 1 1 1 2 0.02777778

2 2 1 2 3 0.02777778

3 3 1 3 4 0.02777778

4 4 1 4 5 0.02777778

5 5 1 5 6 0.02777778

6 6 1 6 7 0.02777778

Yes, the U and V columns have been added to the data frame and have been computed

correctly. This result would be fine as it is, but the data frame has too many rows: there

are repeated pairs (u, v) which show up as repeated rows in the data frame. The goal is to

aggregate the rows of S such that the result has exactly one row for each unique pair (u, v) with

positive probability. This sort of thing is exactly the task for which the marginal function was

designed. We may take a look at the joint distribution of U and V (we only show the first few

rows of the data frame, but the complete one has 11 rows).

> UV <- marginal(S, vars = c("U", "V"))

> head(UV)

U V probs

1 1 2 0.02777778

2 2 3 0.05555556

3 2 4 0.02777778

4 3 4 0.05555556

5 3 5 0.05555556

6 4 5 0.05555556

The data frame is difficult to understand. It would be better to have a tabular display like

Table 7.3. We can do that with the xtabs function.

> xtabs(round(probs, 3) ~ U + V, data = UV)

V

U 2 3 4 5 6 7 8 9 10 11 12

1 0.028 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

2 0.000 0.056 0.028 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

3 0.000 0.000 0.056 0.056 0.028 0.000 0.000 0.000 0.000 0.000 0.000

4 0.000 0.000 0.000 0.056 0.056 0.056 0.028 0.000 0.000 0.000 0.000

5 0.000 0.000 0.000 0.000 0.056 0.056 0.056 0.056 0.028 0.000 0.000

6 0.000 0.000 0.000 0.000 0.000 0.056 0.056 0.056 0.056 0.056 0.028
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Compare these values to the ones shown in Table 7.3. We can repeat the process with

marginal to get the univariate marginal distributions of U and V separately.

> marginal(UV, vars = "U")

U probs

1 1 0.02777778

2 2 0.08333333

3 3 0.13888889

4 4 0.19444444

5 5 0.25000000

6 6 0.30555556

> head(marginal(UV, vars = "V"))

V probs

1 2 0.02777778

2 3 0.05555556

3 4 0.08333333

4 5 0.11111111

5 6 0.13888889

6 7 0.16666667

Another way to do the same thing is with the rowSums and colSums of the xtabs object.

Compare

> temp <- xtabs(probs ~ U + V, data = UV)

> rowSums(temp)

1 2 3 4 5 6

0.02777778 0.08333333 0.13888889 0.19444444 0.25000000 0.30555556

> colSums(temp)

2 3 4 5 6 7

0.02777778 0.05555556 0.08333333 0.11111111 0.13888889 0.16666667

8 9 10 11 12

0.13888889 0.11111111 0.08333333 0.05555556 0.02777778

You should check that the answers that we have obtained exactly match the same (somewhat

laborious) calculations that we completed in Example 7.2.

7.2 Joint and Marginal Expectation

Given a function g with arguments (x, y) we would like to know the long-run average behavior

of g(X, Y) and how to mathematically calculate it. Expectation in this context is computed in

the pedestrian way. We simply integrate (sum) with respect to the joint probability density

(mass) function.

IE g(X, Y) =

"

S X,Y

g(x, y) fX,Y(x, y) dx dy, (7.2.1)

or in the discrete case

IE g(X, Y) =
∑∑

(x,y)∈S X,Y

g(x, y) fX,Y(x, y). (7.2.2)
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7.2.1 Covariance and Correlation

There are two very special cases of joint expectation: the covariance and the correlation. These

are measures which help us quantify the dependence between X and Y .

Definition 7.4. The covariance of X and Y is

Cov(X, Y) = IE(X − IE X)(Y − IE Y). (7.2.3)

By the way, there is a shortcut formula for covariance which is almost as handy as the

shortcut for the variance:

Cov(X, Y) = IE(XY) − (IE X)(IE Y). (7.2.4)

The proof is left to Exercise 7.1.

The Pearson product moment correlation between X and Y is the covariance between X and

Y rescaled to fall in the interval [−1, 1]. It is formally defined by

Corr(X, Y) =
Cov(X, Y)

σXσY

(7.2.5)

The correlation is usually denoted by ρX,Y or simply ρ if the random variables are clear from

context. There are some important facts about the correlation coefficient:

1. The range of correlation is −1 ≤ ρX,Y ≤ 1.

2. Equality holds above (ρX,Y = ±1) if and only if Y is a linear function of X with probability

one.

Example 7.5. Wewill compute the covariance for the discrete distribution in Example 7.2. The

expected value of U is

IEU =

6∑

u=1

u fU(u) =

6∑

u=1

u
2u − 1
36

= 1

(
1

36

)
+ 2

(
3

36

)
+ · · · + 6

(
11

36

)
=

161

36
,

and the expected value of V is

IEV =

12∑

v=2

v
6 − |7 − v|

36
= 2

(
1

36

)
+ 3

(
2

36

)
+ · · · + 12

(
1

36

)
= 7,

and the expected value of UV is

IEUV =

6∑

u=1

12∑

v=2

uv fU,V(u, v) = 1 · 2
(
1

36

)
+ 2 · 3

(
2

36

)
+ · · · + 6 · 12

(
1

36

)
=

308

9
.

Therefore the covariance of (U,V) is

Cov(U,V) = IEUV − (IEU) (IEV) =
308

9
− 161

36
· 7 = 35

12
.

All we need now are the standard deviations of U and V to calculate the correlation coefficient

(omitted).

We will do a continuous example so that you can see how it works.
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Example 7.6. Let us find the covariance of the variables (X, Y) from Example 7.3. The expected

value of X is

IE X =

∫ 1

0

x · 6
5

(
x +

1

3

)
dx =

2

5
x3 +

1

5
x2

∣∣∣∣∣
1

x=0

=
3

5
,

and the expected value of Y is

IE Y =

∫ 1

0

y · 6
5

(
1

2
+ y2

)
dx =

3

10
y2 +

3

20
y4

∣∣∣∣∣
1

y=0

=
9

20
.

Finally, the expected value of XY is

IE XY =

∫ 1

0

∫ 1

0

xy
6

5

(
x + y2

)
dx dy,

=

∫ 1

0

(
2

5
x3y +

3

10
xy4

)∣∣∣∣∣∣
1

x=0

dy,

=

∫ 1

0

(
2

5
y +

3

10
y4

)
dy,

=
1

5
+

3

50
,

which is 13/50. Therefore the covariance of (X, Y) is

Cov(X, Y) =
13

50
−

(
3

5

) (
9

20

)
= − 1

100
.

7.2.2 How to do it with R

There are not any specific functions in the prob package designed for multivariate expectation.

This is not a problem, though, because it is easy enough to do expectation the long way – with

column operations. We just need to keep the definition in mind. For instance, we may compute

the covariance of (U,V) from Example 7.5.

> Eu <- sum(S$U * S$probs)

> Ev <- sum(S$V * S$probs)

> Euv <- sum(S$U * S$V * S$probs)

> Euv - Eu * Ev

[1] 2.916667

Compare this answer to what we got in Example 7.5.

To do the continuous case we could use the computer algebra utilities of Yacas and the

associated R package Ryacas [35]. See Section 7.7.1 for another example where the Ryacas

package appears.

7.3 Conditional Distributions

If x ∈ S X is such that fX(x) > 0, then we define the conditional density of Y | X = x, denoted

fY |x, by

fY |x(y|x) =
fX,Y(x, y)

fX(x)
, y ∈ S Y . (7.3.1)

We define fX|y in a similar fashion.
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Example 7.7. Let the joint PMF of X and Y be given by

fX,Y(x, y) =

Example 7.8. Let the joint PDF of X and Y be given by

Bayesian Connection

Conditional distributions play a fundamental role in Bayesian probability and statistics. There

is a parameter θ which is of primary interest, and about which we would like to learn. But

rather than observing θ directly, we instead observe a random variable X whose probability

distribution depends on θ. Using the information we provided by X, we would like to update

the information that we have about θ.

Our initial beliefs about θ are represented by a probability distribution, called the prior dis-

tribution, denoted by π. The PDF fX|θ is called the likelihood function, also called the likelihood

of X conditional on θ. Given an observation X = x, we would like to update our beliefs π to

a new distribution, called the posterior distribution of θ given the observation X = x, denoted

πθ|x. It may seem a mystery how to obtain πθ|x based only on the information provided by π

and fX|θ, but it should not be. We have already studied this in Section 4.8 where it was called

Bayes’ Rule:

π(θ|x) = π(θ) f (x|θ)∫
π(u) f (x|u)du

. (7.3.2)

Compare the above expression to Equation 4.8.1.

Example 7.9. Suppose the parameter θ is the IP(Heads) for a biased coin. It could be any value

from 0 to 1. Perhaps we have some prior information about this coin, for example, maybe we

have seen this coin before and we have reason to believe that it shows Heads less than half of

the time. Suppose that we represent our beliefs about θ with a beta(shape1 = 1, shape2 = 3)

prior distribution, that is, we assume

θ ∼ π(θ) = 3(1 − θ)2, 0 < θ < 1.

To learn more about θ, we will do what is natural: flip the coin. We will observe a ran-

dom variable X which takes the value 1 if the coin shows Heads, and 0 if the coin shows

Tails. Under these circumstances, X will have a Bernoulli distribution, and in particular,

X|θ ∼ binom(size = 1, prob = θ):

fX|θ(x|θ) = θx(1 − θ)1−x, x = 0, 1.

Based on the observation X = x, we will update the prior distribution to the posterior distribu-

tion, and we will do so with Bayes’ Rule: it says

π(θ|x) ∝ π(θ) f (x|θ),
= θx(1 − θ)1−x · 3(1 − θ)2,
= 3 θx(1 − θ)3−x, 0 < θ < 1,

where the constant of proportionality is given by

∫
3 ux(1 − u)3−xdu =

∫
3 u(1+x)−1(1 − u)(4−x)−1du = 3

Γ(1 + x)Γ(4 − x)

Γ[(1 + x) + (4 − x)]
,
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the integral being calculated by inspection of the formula for a beta(shape1 = 1+x, shape2 =

4 − x) distribution. That is to say, our posterior distribution is precisely

θ|x ∼ beta(shape1 = 1 + x, shape2 = 4 − x).

The Bayesian statistician uses the posterior distribution for all matters concerning inference

about θ.

Remark 7.10. We usually do not restrict ourselves to the observation of only one X condi-

tional on θ. In fact, it is common to observe an entire sample X1, X2,. . . ,Xn conditional on θ

(which itself is often multidimensional). Do not be frightened, however, because the intuition

is the same. There is a prior distribution π(θ), a likelihood f (x1, x2, . . . , xn|θ), and a posterior

distribution π(θ|x1, x2, . . . , xn). Bayes’ Rule states that the relationship between the three is

π(θ|x1, x2, . . . , xn) ∝ π(θ) f (x1, x2, . . . , xn|θ),

where the constant of proportionality is
∫
π(u) f (x1, x2, . . . , xn|u) du. Any good textbook on

Bayesian Statistics will explain these notions in detail; to the interested reader I recommend

Gelman [33] or Lee [57].

7.4 Independent Random Variables

7.4.1 Independent Random Variables

We recall from Chapter 4 that the events A and B are said to be independent when

IP(A ∩ B) = IP(A) IP(B). (7.4.1)

If it happens that

IP(X = x, Y = y) = IP(X = x) IP(Y = y), for every x ∈ S X, y ∈ S Y , (7.4.2)

then we say that X and Y are independent random variables. Otherwise, we say that X and Y

are dependent. Using the PMF notation from above, we see that independent discrete random

variables satisfy

fX,Y(x, y) = fX(x) fY (y) for every x ∈ S X, y ∈ S Y . (7.4.3)

Continuing the reasoning, given two continuous random variables X and Y with joint PDF fX,Y
and respective marginal PDFs fX and fY that are supported on the sets S X and S Y , if it happens

that

fX,Y(x, y) = fX(x) fY (y) for every x ∈ S X, y ∈ S Y , (7.4.4)

then we say that X and Y are independent.

Example 7.11. In Example 7.1 we considered the random experiment of rolling a fair die twice.

There we found the joint PMF to be

fX,Y(x, y) =
1

36
, x = 1, . . . , 6, y = 1, . . . , 6,

and we found the marginal PMFs fX(x) = 1/6, x = 1, 2, . . . , 6, and fY(y) = 1/6, y = 1, 2, . . . , 6.

Therefore in this experiment X and Y are independent since for every x and y in the joint support

the joint PMF satisfies

fX,Y(x, y) =
1

36
=

(
1

6

) (
1

6

)
= fX(x) fY(y).
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Example 7.12. In Example 7.2 we considered the same experiment but different random vari-

ables U and V . We can prove that U and V are not independent if we can find a single pair

(u, v) where the independence equality does not hold. There are many such pairs. One of them

is (6, 12):

fU,V(6, 12) =
1

36
,

(
11

36

) (
1

36

)
= fU(6) fV(12).

Independent random variables are very useful to the mathematician. They have many, many,

tractable properties. We mention some of the more important ones.

Proposition 7.13. If X and Y are independent, then for any functions u and v,

IE (u(X)v(Y)) = (IE u(X)) (IE v(Y)) . (7.4.5)

Proof. This is straightforward from the definition.

IE (u(X)v(Y)) =

"
u(x)v(y) fX,Y(x, y) dxdy

=

"
u(x)v(y) fX(x) fY (y) dxdy

=

∫
u(x) fX(x) dx

∫
v(y) fY(y) dy

and this last quantity is exactly (IE u(X)) (IE v(Y)). �

Now that we have Proposition 7.13 we mention a corollary that will help us later to quickly

identify those random variables which are not independent.

Corollary 7.14. If X and Y are independent, then Cov(X, Y) = 0, and consequently, Corr(X, Y) =

0.

Proof. When X and Y are independent then IE XY = IE X IE Y . And when the covariance is

zero the numerator of the correlation is 0. �

Remark 7.15. Unfortunately, the converse of Corollary 7.14 is not true. That is, there are many

random variables which are dependent yet their covariance and correlation is zero. For more

details, see Casella and Berger [13].

Proposition 7.13 is useful to us and we will receive mileage out of it, but there is another fact

which will play an even more important role. Unfortunately, the proof is beyond the techniques

presented here. The inquisitive reader should consult Casella and Berger [13], Resnick [70],

etc.

Fact 7.16. If X and Y are independent, then u(X) and v(Y) are independent for any functions u

and v.

7.4.2 Combining Independent Random Variables

Another important corollary of Proposition 7.13 will allow us to find the distribution of sums

of random variables.

Corollary 7.17. If X and Y are independent, then the moment generating function of X + Y is

MX+Y(t) = MX(t) · MY(t). (7.4.6)
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Proof. Choose u(x) = ex and v(y) = ey in Proposition 7.13, and remember the identity et(x+y) =

etx ety. �

Let us take a look at some examples of the corollary in action.

Example 7.18. Let X ∼ binom(size = n1, prob = p) and Y ∼ binom(size = n2, prob = p)

be independent. Then X + Y has MGF

MX+Y(t) = MX(t)MY(t) =
(
q + pet

)n1 (q + pet
)n2
=

(
q + pet

)n1+n2 ,

which is the MGF of a binom(size = n1 + n2, prob = p) distribution. Therefore, X + Y ∼
binom(size = n1 + n2, prob = p).

Example 7.19. Let X ∼ norm(mean = µ1, sd = σ1) and Y ∼ norm(mean = µ2, sd = σ2) be

independent. Then X + Y has MGF

MX(t)MY(t) = exp
{
µ1t + t

2σ2
1/2

}
exp

{
µ2t + t

2σ2
2/2

}
= exp

{
(µ1 + µ2) t + t

2
(
σ2

1 + σ
2
2

)
/2

}
,

which is the MGF of a norm(mean = µ1 + µ2, sd =
√
σ2

1
+ σ2

2
) distribution.

Even when we cannot use the MGF trick to identify the exact distribution of a linear com-

bination of random variables, we can still say something about its mean and variance.

Proposition 7.20. Let X1 and X2 be independent with respective population means µ1 and µ2
and population standard deviations σ1 and σ2. For given constants a1 and a2, define Y =

a1X1 + a2X2. Then the mean and standard deviation of Y are given by the formulas

µY = a1µ1 + a2µ2, σY =
(
a21σ

2
1 + a

2
2σ

2
2

)1/2
. (7.4.7)

Proof. We use Proposition 5.11:

IE Y = IE (a1X1 + a2X2) = a1 IE X1 + a2 IE X2 = a1µ1 + a2µ2.

For the standard deviation, we will find the variance and take the square root at the end. And

to calculate the variance we will first compute IE Y2 with an eye toward using the identity

σ2
Y = IE Y2 − (IE Y)2 as a final step.

IE Y2 = IE (a1X1 + a2X2)
2 = IE

(
a21X

2
1 + a

2
2X

2
2 + 2a1a2X1X2

)
.

Using linearity of expectation the IE distributes through the sum. Now IE X2
i = σ

2
i + µ

2
i , for

i = 1 and 2 and IE X1X2 = IE X1 IE X2 = µ1µ2 because of independence. Thus

IE Y2 = a21(σ
2
1 + µ

2
1) + a

2
2(σ

2
2 + µ

2
2) + 2a1a2µ1µ2,

= a21σ
2
1 + a

2
2σ

2
2 +

(
a21µ

2
1 + a

2
2µ

2
2 + 2a1a2µ1µ2

)
.

But notice that the expression in the parentheses is exactly (a1µ1 + a2µ2)
2 = (IE Y)2, so the

proof is complete.. �
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7.5 Exchangeable Random Variables

Two random variables X and Y are said to be exchangeable if their joint CDF is a symmetric

function of its arguments:

FX,Y(x, y) = FX,Y(y, x), for all (x, y) ∈ R2. (7.5.1)

When the joint density f exists, we may equivalently say that X and Y are exchangeable if

f (x, y) = f (y, x) for all (x, y).

Exchangeable random variables exhibit symmetry in the sense that a person may exchange

one variable for the other with no substantive changes to their joint random behavior. While

independence speaks to a lack of influence between the two variables, exchangeability aims to

capture the symmetry between them.

Example 7.21. Let X and Y have joint PDF

fX,Y(x, y) = (1 + α)λ2e−λ(x+y) + α(2λ)2e−2λ(x+y) − 2αλ2
(
e−λ(2x+y) + e−λ(x+2y)

)
. (7.5.2)

It is straightforward and tedious to check that
!

f = 1. Wemay see immediately that fX,Y(x, y) =

fX,Y(y, x) for all (x, y), which confirms that X and Y are exchangeable. Here, α is said to be an

association parameter. This particular example is one from the Farlie-Gumbel-Morgenstern

family of distributions; see [54].

Example 7.22. Suppose X and Y are i.i.d. binom(size = n, prob = p). Then their joint PMF

is

fX,Y(x, y) = fX(x) fY (y)

=

(
n

x

)
px(1 − p)n−x

(
n

y

)
py(1 − p)n−y,

=

(
n

x

)(
n

y

)
px+y(1 − p)2n−(x+y) ,

and the value is the same if we exchange x and y. Therefore (X, Y) are exchangeable.

Looking at Example 7.22 more closely we see that the fact that (X, Y) are exchangeable

has nothing to do with the binom(size = n, prob = p) distribution; it only matters that they

are independent (so that the joint PDF factors) and they are identically distributed (in which

case we may swap letters to no effect). We could just have easily used any other marginal

distribution. We will take this as a proof of the following proposition.

Proposition 7.23. If X and Y are i.i.d. (with common marginal distribution F) then X and Y

are exchangeable.

Exchangeability thus contains i.i.d. as a special case.

7.6 The Bivariate Normal Distribution

The bivariate normal PDF is given by the unwieldy formula

fX,Y(x, y) =
1

2πσXσY

√
1 − ρ2

exp

−
1

2(1 − ρ2)


(
x − µX
σX

)2
+ · · ·

· · · + 2ρ
(
x − µX
σX

) (
y − µY
σY

)
+

(
y − µY
σY

)2
 , (7.6.1)
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for (x, y) ∈ R2. We write (X, Y) ∼ mvnorm(mean = µ, sigma = Σ), where

µ = (µX, µY)
T ,

∑
=

(
σ2

X ρσXσY

ρσXσY σ2
Y

)
. (7.6.2)

See Appendix E. The vector notation allows for a more compact rendering of the joint PDF:

fX,Y(x) =
1

2π |Σ|1/2
exp

{
−1
2
(x − µ)⊤ Σ−1 (x − µ)

}
, (7.6.3)

where in an abuse of notation we have written x for (x, y). Note that the formula only holds

when ρ , ±1.

Remark 7.24. In Remark 7.15 we noted that just because random variables are uncorrelated it

does not necessarily mean that they are independent. However, there is an important exception

to this rule: the bivariate normal distribution. Indeed, (X, Y) ∼ mvnorm(mean = µ, sigma = Σ)

are independent if and only if ρ = 0.

Remark 7.25. Inspection of the joint PDF shows that if µX = µY and σX = σY then X and Y are

exchangeable.

The bivariate normal MGF is

MX,Y(t) = exp

(
µ⊤t +

1

2
t⊤Σt

)
, (7.6.4)

where t = (t1, t2).

The bivariate normal distribution may be intimidating at first but it turns out to be very

tractable compared to other multivariate distributions. An example of this is the following fact

about the marginals.

Fact 7.26. If (X, Y) ∼ mvnorm(mean = µ, sigma = Σ) then

X ∼ norm(mean = µX, sd = σX) and Y ∼ norm(mean = µY , sd = σY). (7.6.5)

From this we immediately get that IE X = µX and Var(X) = σ2
X (and the same is true for Y

with the letters switched). And it should be no surprise that the correlation between X and Y is

exactly Corr(X, Y) = ρ.

Proposition 7.27. The conditional distribution of Y | X = x is norm(mean = µY |x, sd = σY |x),

where

µY |x = µY + ρ
σY

σX

(x − µX) , and σY |x = σY

√
1 − ρ2. (7.6.6)

There are a few things to note about Proposition 7.27 which will be important in Chapter

11. First, the conditional mean of Y |x is linear in x, with slope

ρ
σY

σX

. (7.6.7)

Second, the conditional variance of Y |x is independent of x.
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7.6.1 How to do it with R

The multivariate normal distribution is implemented in both the mvtnorm package [34] and

the mnormt package [17]. We use the mvtnorm package in this book simply because it is a

dependency of another package used in the book.

The mvtnorm package has functions dmvnorm and rmvnorm for the PDF and to generate

random vectors, respectively. Let us get started with a graph of the bivariate normal PDF. We

can make the plot with the following code3, where the workhorse is the persp function in base

R.

> library(mvtnorm)

> x <- y <- seq(from = -3, to = 3, length.out = 30)

> f <- function(x, y) dmvnorm(cbind(x, y), mean = c(0, 0),

+ sigma = diag(2))

> z <- outer(x, y, FUN = f)

> persp(x, y, z, theta = -30, phi = 30, ticktype = "detailed")

We chose the standard bivariate normal, mvnorm(mean = 0, sigma = I), to display.

7.7 Bivariate Transformations of Random Variables

We studied in Section 6.4 how to find the PDF of Y = g(X) given the PDF of X. But now we

have two random variables X and Y, with joint PDF fX,Y, and we would like to consider the

joint PDF of two new random variables

U = g(X, Y) and V = h(X, Y), (7.7.1)

where g and h are two given functions, typically “nice” in the sense of Appendix E.6.

Suppose that the transformation (x, y) 7−→ (u, v) is one-to-one. Then an inverse transforma-

tion x = x(u, v) and y = y(u, v) exists, so let ∂(x, y)/∂(u, v) denote the Jacobian of the inverse

transformation. Then the joint PDF of (U,V) is given by

fU,V(u, v) = fX,Y
[
x(u, v), y(u, v)

] ∣∣∣∣∣
∂(x, y)

∂(u, v)

∣∣∣∣∣ , (7.7.2)

or we can rewrite more shortly as

fU,V(u, v) = fX,Y(x, y)

∣∣∣∣∣
∂(x, y)

∂(u, v)

∣∣∣∣∣ . (7.7.3)

Take a moment and compare Equation 7.7.3 to Equation 6.4.2. Do you see the connection?

3Another way to do this is with the curve3d function in the emdbook package [9]. It looks like this:

library(emdbook); library(mvtnorm) # note: the order matters

mu <- c(0,0); sigma <- diag(2)

f <- function(x,y) dmvnorm(c(x,y), mean = mu, sigma = sigma)

curve3d(f(x,y), from = c(-3,-3), to = c(3,3), theta = -30, phi = 30)

The code above is slightly shorter than that using persp and is easier to understand. One must be careful, however.

If the library calls are swapped then the code will not work because both packages emdbook and mvtnorm have

a function called “dmvnorm”; one must load them to the search path in the correct order or R will use the wrong

one (the arguments are named differently and the underlying algorithms are different).
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Figure 7.6.1: Graph of a bivariate normal PDF
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Remark 7.28. It is sometimes easier to postpone solving for the inverse transformation x =

x(u, v) and y = y(u, v). Instead, leave the transformation in the form u = u(x, y) and v = v(x, y)

and calculate the Jacobian of the original transformation

∂(u, v)

∂(x, y)
=

∣∣∣∣∣∣
∂u
∂x

∂u
∂y

∂v
∂x

∂v
∂y

∣∣∣∣∣∣ =
∂u

∂x

∂v

∂y
− ∂u
∂y

∂v

∂x
. (7.7.4)

Once this is known, we can get the PDF of (U,V) by

fU,V(u, v) = fX,Y(x, y)

∣∣∣∣∣∣∣
1
∂(u,v)

∂(x,y)

∣∣∣∣∣∣∣
. (7.7.5)

In some cases there will be a cancellation and the work will be a lot shorter. Of course, it is not

always true that
∂(x, y)

∂(u, v)
=

1
∂(u,v)

∂(x,y)

, (7.7.6)

but for the well-behaved examples that we will see in this book it works just fine. . . do you see

the connection between Equations 7.7.6 and 6.4.5?

Example 7.29. Let (X, Y) ∼ mvnorm(mean = 02×1, sigma = I2×2) and consider the transfor-

mation

U = 3X + 4Y,

V = 5X + 6Y.

We can solve the system of equations to find the inverse transformations; they are

X = − 3U + 2V,

Y =
5

2
U − 3

2
V,

in which case the Jacobian of the inverse transformation is
∣∣∣∣∣∣
−3 2
5
2
−3

2

∣∣∣∣∣∣ = 3

(
−3
2

)
− 2

(
5

2

)
= −1

2
.

As (x, y) traverses R2, so too does (u, v). Since the joint PDF of (X, Y) is

fX,Y(x, y) =
1

2π
exp

{
−1
2

(
x2 + y2

)}
, (x, y) ∈ R2,

we get that the joint PDF of (U,V) is

fU,V(u, v) =
1

2π
exp

−
1

2

(−3u + 2v)2 +
(
5u − 3v

2

)2
 ·

1

2
, (u, v) ∈ R2. (7.7.7)

Remark 7.30. It may not be obvious, but Equation 7.7.7 is the PDF of a mvnorm distribution.

For a more general result see Theorem 7.34.
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7.7.1 How to do it with R

It is possible to do the computations above in R with the Ryacas package. The package is an

interface to the open-source computer algebra system, “Yacas”. The user installs Yacas, then

employs Ryacas to submit commands to Yacas, after which the output is displayed in the R

console.

There are not yet any examples of Yacas in this book, but there are online materials to help

the interested reader: see http://code.google.com/p/ryacas/ to get started.

7.8 Remarks for the Multivariate Case

There is nothing spooky about n ≥ 3 random variables. We just have a whole bunch of them:

X1, X2,. . . , Xn, which we can shorten to X = (X1, X2, . . . , Xn)
T to make the formulas prettier

(now may be a good time to check out Appendix E.5). For X supported on the set S X, the joint

PDF fX (if it exists) satisfies

fX(x) > 0, for x ∈ S X, (7.8.1)

and ∫∫
· · ·

∫
fX(x) dx1dx2 · · · dxn = 1, (7.8.2)

or even shorter:
∫
fX(x) dx = 1. The joint CDF FX is defined by

FX(x) = IP(X1 ≤ x1, X2 ≤ x2, . . . , Xn ≤ xn), (7.8.3)

for x ∈ Rn. The expectation of a function g(X) is defined just as we would imagine:

IE g(X) =

∫
g(x) fX(x) dx. (7.8.4)

provided the integral exists and is finite. And the moment generating function in the multivari-

ate case is defined by

MX(t) = IE exp
{
tTX

}
, (7.8.5)

whenever the integral exists and is finite for all t in a neighborhood of 0n×1 (note that tTX is

shorthand for t1X1 + t2X2 + · · · + tnXn). The only difference in any of the above for the discrete

case is that integrals are replaced by sums.

Marginal distributions are obtained by integrating out remaining variables from the joint

distribution. And even if we are given all of the univariate marginals it is not enough to deter-

mine the joint distribution uniquely.

We say that X1, X2, . . . , Xn are mutually independent if their joint PDF factors into the

product of the marginals

fX(x) = fX1
(x1) fX2

(x2) · · · fXn
(xn), (7.8.6)

for every x in their joint support S X, and we say that X1, X2, . . . , Xn are exchangeable if their

joint PDF (or CDF) is a symmetric function of its n arguments, that is, if

fX(x
∗) = fX(x), (7.8.7)

for any reordering x∗ of the elements of x = (x1, x2, . . . , xn) in the joint support.

http://code.google.com/p/ryacas/
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Proposition 7.31. Let X1, X2, . . . , Xn be independent with respective population means µ1,

µ2, . . . , µn and standard deviations σ1, σ2, . . . , σn. For given constants a1, a2, . . . ,an define

Y =
∑n

i=1 aiXi. Then the mean and standard deviation of Y are given by the formulas

µY =

n∑

i=1

aiµi, σY =


n∑

i=1

a2iσ
2
i


1/2

. (7.8.8)

Proof. The mean is easy:

IE Y = IE


n∑

i=1

aiXi

 =
n∑

i=1

ai IE Xi =

n∑

i=1

aiµi.

The variance is not too difficult to compute either. As an intermediate step, we calculate IE Y2.

IE Y2 = IE


n∑

i=1

aiXi


2

= IE


n∑

i=1

a2i X
2
i + 2

n−1∑

i=1

n∑

j=i+1

aia jXiX j

 .

Using linearity of expectation the IE distributes through the sums. Now IE X2
i = σ

2
i + µ

2
i and

IE XiX j = IE Xi IE X j = µiµ j when i , j because of independence. Thus

IE Y2 =

n∑

i=1

a2i (σ
2
i + µ

2
i ) + 2

n−1∑

i=1

n∑

j=i+1

aia jµiµ j

=

n∑

i=1

a2iσ
2
i +


n∑

i=1

a2i µ
2
i + 2

n−1∑

i=1

n∑

j=i+1

aia jµiµ j



To complete the proof, note that the expression in the parentheses is exactly (IE Y)2, and recall

the identity σ2
Y
= IE Y2 − (IE Y)2. �

There is a corresponding statement of Fact 7.16 for the multivariate case. The proof is also

omitted here.

Fact 7.32. If X and Y are mutually independent random vectors, then u(X) and v(Y) are inde-

pendent for any functions u and v.

Bruno de Finetti was a strong proponent of the subjective approach to probability. He

proved an important theorem in 1931 which illuminates the link between exchangeable random

variables and independent random variables. Here it is in one of its simplest forms.

Theorem 7.33. De Finetti’s Theorem. Let X1, X2, . . . be a sequence of binom(size =

1, prob = p) random variables such that (X1, . . . , Xk) are exchangeable for every k. Then

there exists a random variable Θ with support [0, 1] and PDF fΘ(θ) such that

IP(X1 = x1, . . . , Xk = xk) =

∫ 1

0

θ
∑

xi(1 − θ)k−
∑

xi fΘ(θ) dθ, (7.8.9)

for all xi = 0, 1, i = 1, 2, . . . , k.



7.8. REMARKS FOR THE MULTIVARIATE CASE 177

To get a handle on the intuitive content de Finetti’s theorem, imagine that we have a bunch

of coins in our pocket with each having its own unique value of θ = IP(Heads). We reach into

our pocket and select a coin at random according to some probability – say, fΘ(θ). We take the

randomly selected coin and flip it k times.

Think carefully: the conditional probability of observing a sequence X1 = x1, . . . , Xk = xk,

given a specific coin θ would just be θ
∑

xi(1 − θ)k−
∑

xi , because the coin flips are an independent

sequence of Bernoulli trials. But the coin is random, so the Theorem of Total Probability says

we can get the unconditional probability IP(X1 = x1, . . . , Xk = xk) by adding up terms that look

like

θ
∑

xi(1 − θ)k−
∑

xi fΘ(θ), (7.8.10)

where we sum over all possible coins. The right-hand side of Equation 7.8.9 is a sophisticated

way to denote this process.

Of course, the integral’s value does not change if we jumble the xi’s, so (X1, . . . , Xk) are

clearly exchangeable. The power of de Finetti’s Theorem is that every infinite binary exchange-

able sequence can be written in the above form.

The connection to subjective probability: our prior information about θ corresponds to

fΘ(θ) and the likelihood of the sequence X1 = x1, . . . , Xk = xk (conditional on θ) corresponds

to θ
∑

xi(1 − θ)k−
∑

xi . Compare Equation 7.8.9 to Section 4.8 and Section 7.3.

The multivariate normal distribution immediately generalizes from the bivariate case. If the

matrix Σ is nonsingular then the joint PDF of X ∼ mvnorm(mean = µ, sigma = Σ) is

fX(x) =
1

(2π)n/2 |Σ|1/2
exp

{
−1
2
(x − µ)⊤ Σ−1 (x − µ)

}
, (7.8.11)

and the MGF is

MX(t) = exp

{
µ⊤t +

1

2
t⊤Σt

}
. (7.8.12)

We will need the following in Chapter 12.

Theorem 7.34. If X ∼ mvnorm(mean = µ, sigma = Σ) and A is any matrix, then the random

vector Y = AX is distributed

Y ∼ mvnorm(mean = Aµ, sigma = AΣAT). (7.8.13)

Proof. Look at the MGF of Y:

MY(t) = IE exp
{
tT(AX)

}
,

= IE exp
{
(ATt)TX

}
,

= exp

{
µT(A⊤t) +

1

2
(ATt)TΣ(ATt)

}
,

= exp

{
(Aµ)T t +

1

2
tT

(
AΣAT

)
t

}
,

and the last expression is the MGF of an mvnorm(mean = Aµ, sigma = AΣAT) distribution.

�
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7.9 The Multinomial Distribution

We sample n times, with replacement, from an urn that contains balls of k different types. Let

X1 denote the number of balls in our sample of type 1, let X2 denote the number of balls of type

2, . . . , and let Xk denote the number of balls of type k. Suppose the urn has proportion p1 of

balls of type 1, proportion p2 of balls of type 2, . . . , and proportion pk of balls of type k. Then

the joint PMF of (X1, . . . , Xk) is

fX1,...,Xk
(x1, . . . , xk) =

(
n

x1 x2 · · · xk

)
p
x1
1
p
x2
2
· · · pxk

k
, (7.9.1)

for (x1, . . . , xk) in the joint support S X1,...XK
. We write

(X1, . . . , Xk) ∼ multinom(size = n, prob = pk×1). (7.9.2)

Several comments are in order. First, the joint support set S X1,...XK
contains all nonnegative

integer k-tuples (x1, . . . , xk) such that x1 + x2 + · · · + xk = n. A support set like this is called a

simplex. Second, the proportions p1, p2, . . . , pk satisfy pi ≥ 0 for all i and p1+ p2+ · · ·+ pk = 1.

Finally, the symbol (
n

x1 x2 · · · xk

)
=

n!

x1! x2! · · · xk!
(7.9.3)

is called a multinomial coefficient which generalizes the notion of a binomial coefficient we

saw in Equation 4.5.1.

The form and notation we have just described matches the R usage but is not standard

among other texts. Most other books use the above for a k − 1 dimension multinomial distribu-

tion, because the linear constraint x1 + x2 + · · · + xk = n means that once the values of X1, X2,

. . . , Xk−1 are known the final value Xk is determined, not random. Another term used for this is

a singular distribution.

For the most part we will ignore these difficulties, but the careful reader should keep them

in mind. There is not much of a difference in practice, except that below we will use a two-

dimensional support set for a three-dimension multinomial distribution. See Figure 7.9.1.

When k = 2, we have x1 = x and x2 = n − x, we have p1 = p and p2 = 1 − p, and the

multinomial coefficient is literally a binomial coefficient. In the previous notation we have thus

shown that the multinom(size = n, prob = p2×1) distribution is the same as a binom(size =

n, prob = p) distribution.

Example 7.35. Dinner with Barack Obama. During the 2008 U.S. presidential primary, Barack

Obama offered to have dinner with three randomly selected monetary contributors to his cam-

paign. Imagine the thousands of people in the contributor database. For the sake of argument,

Suppose that the database was approximately representative of the U.S. population as a whole,

Suppose Barack Obamawants to have dinner http://pewresearch.org/pubs/773/fewer-voters-ident

36 democrat, 27 republican , 37 independent.

Remark 7.36. Here are some facts about the multinomial distribution.

1. The expected value of (X1, X2, . . . , Xk) is npk×1.

2. The variance-covariance matrix Σ is symmetric with diagonal entries σ2
i
= npi(1 − pi),

i = 1, 2, . . . , k and off-diagonal entries Cov(Xi, X j) = −npip j, for i , j. The correlation

between Xi and X j is therefore Corr(Xi, X j) = −
√
pip j/(1 − pi)(1 − p j).

http://pewresearch.org/pubs/773/fewer-voters-identify-as-republicans
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3. The marginal distribution of (X1, X2, . . . , Xk−1) is multinom(size = n, prob = p(k−1)×1)

with

p(k−1)×1 = (p1, p2, . . . , pk−2, pk−1 + pk) , (7.9.4)

and in particular, Xi ∼ binom(size = n, prob = pi).

7.9.1 How to do it with R

There is support for the multinomial distribution in base R, namely in the stats package.

The dmultinom function represents the PMF and the rmultinom function generates random

variates.

> library(combinat)

> tmp <- t(xsimplex(3, 6))

> p <- apply(tmp, MARGIN = 1, FUN = dmultinom, prob = c(36,

+ 27, 37))

> library(prob)

> S <- probspace(tmp, probs = p)

> ProbTable <- xtabs(probs ~ X1 + X2, data = S)

> round(ProbTable, 3)

X2

X1 0 1 2 3 4 5 6

0 0.003 0.011 0.020 0.020 0.011 0.003 0.000

1 0.015 0.055 0.080 0.058 0.021 0.003 0.000

2 0.036 0.106 0.116 0.057 0.010 0.000 0.000

3 0.047 0.103 0.076 0.018 0.000 0.000 0.000

4 0.034 0.050 0.018 0.000 0.000 0.000 0.000

5 0.013 0.010 0.000 0.000 0.000 0.000 0.000

6 0.002 0.000 0.000 0.000 0.000 0.000 0.000

Do some examples of rmultinom.

Here is another way to do it4.

4Another way to do the plot is with the scatterplot3d function in the scatterplot3d package [61]. It

looks like this:

library(scatterplot3d)

X <- t(as.matrix(expand.grid(0:6, 0:6)))

X <- X[ , colSums(X) <= 6]; X <- rbind(X, 6 - colSums(X))

Z <- round(apply(X, 2, function(x) dmultinom(x, prob = 1:3)), 3)

A <- data.frame(x = X[1, ], y = X[2, ], probability = Z)

scatterplot3d(A, type = “h”, lwd = 3, box = FALSE)

The scatterplot3d graph looks better in this example, but the code is clearly more difficult to understand. And

with cloud one can easily do conditional plots of the form cloud(z ~x + y|f), where f is a factor.
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X1
X2

probs

Figure 7.9.1: Plot of a multinomial PMF

Chapter Exercises

Exercise 7.1. Prove that Cov(X, Y) = IE(XY) − (IE X)(IE Y).

Exercise 7.2. Suppose X ∼ chisq(df = p1) and Y ∼ chisq(df = p2) are independent. Find the

distribution of X + Y (you may want to refer to Equation 6.5.6).

Exercise 7.3. Show that when X and Y are independent the MGF of X − Y is MX(t)MY(−t).
Use this to find the distribution of X − Y when X ∼ norm(mean = µ1, sd = σ1) and Y ∼
norm(mean = µ2, sd = σ2) are independent.



Chapter 8

Sampling Distributions

This is an important chapter; it is the bridge from probability and descriptive statistics that we

studied in Chapters 3 through 7 to inferential statistics which forms the latter part of this book.

Here is the link: we are presented with a population about which we would like to learn.

And while it would be desirable to examine every single member of the population, we find

that it is either impossible or infeasible to for us to do so, thus, we resort to collecting a sample

instead. We do not lose heart. Our method will suffice, provided the sample is representative

of the population. A good way to achieve this is to sample randomly from the population.

Supposing for the sake of argument that we have collected a random sample, the next task is

to make some sense out of the data because the complete list of sample information is usually

cumbersome, unwieldy. We summarize the data set with a descriptive statistic, a quantity

calculated from the data (we saw many examples of these in Chapter 3). But our sample was

random. . . therefore, it stands to reason that our statistic will be random, too. How is the

statistic distributed?

The probability distribution associated with the population (from which we sample) is

called the population distribution, and the probability distribution associated with our statistic

is called its sampling distribution; clearly, the two are interrelated. To learn about the popu-

lation distribution, it is imperative to know everything we can about the sampling distribution.

Such is the goal of this chapter.

We begin by introducing the notion of simple random samples and cataloguing some of their

more convenient mathematical properties. Next we focus on what happens in the special case

of sampling from the normal distribution (which, again, has several convenient mathematical

properties), and in particular, we meet the sampling distribution of X and S 2. Then we explore

what happens to X’s sampling distribution when the population is not normal and prove one of

the most remarkable theorems in statistics, the Central Limit Theorem (CLT).

With the CLT in hand, we then investigate the sampling distributions of several other pop-

ular statistics, taking full advantage of those with a tractable form. We finish the chapter with

an exploration of statistics whose sampling distributions are not quite so tractable, and to ac-

complish this goal we will use simulation methods that are grounded in all of our work in the

previous four chapters.

What do I want them to know?

• the notion of population versus simple random sample, parameter versus statistic, and

population distribution versus sampling distribution

• the classical sampling distributions of the standard one and two sample statistics

181
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• how to generate a simulated sampling distribution when the statistic is crazy

• the Central Limit Theorem, period.

• some basic concepts related to sampling distribution utility, such as bias and variance

8.1 Simple Random Samples

8.1.1 Simple Random Samples

Definition 8.1. If X1, X2, . . . , Xn are independent with Xi ∼ f for i = 1, 2, . . . , n, then we say

that X1, X2, . . . , Xn are independent and identically distributed (i.i.d.) from the population f or

alternatively we say that X1, X2, . . . , Xn are a simple random sample of size n, denoted SRS (n),

from the population f .

Proposition 8.2. Let X1, X2, . . . , Xn be a SRS (n) from a population distribution with mean µ

and finite standard deviation σ. Then the mean and standard deviation of X are given by the

formulas µX = µ and σX = σ/
√
n.

Proof. Plug in a1 = a2 = · · · = an = 1/n in Proposition 7.31. �

The next fact will be useful to us when it comes time to prove the Central Limit Theorem

in Section 8.3.

Proposition 8.3. Let X1, X2, . . . , Xn be a SRS (n) from a population distribution with MGF

M(t). Then the MGF of X is given by

MX(t) =
[
M

(
t

n

)]n
. (8.1.1)

Proof. Go from the definition:

MX(t) = IE etX,

= IE et(X1+···+Xn)/n,

= IE etX1/netX2/n · · · etXn/n.

And because X1, X2, . . . , Xn are independent, Proposition 7.13 allows us to distribute the ex-

pectation among each term in the product, which is

IE etX1/n IE etX2/n · · · IE etXn/n.

The last step is to recognize that each term in last product above is exactly M(t/n). �

8.2 Sampling from a Normal Distribution

8.2.1 The Distribution of the Sample Mean

Proposition 8.4. Let X1, X2, . . . , Xn be a SRS (n) from a norm(mean = µ, sd = σ) distribution.

Then the sample mean X has a norm(mean = µ, sd = σ/
√
n) sampling distribution.
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Proof. The mean and standard deviation of X follow directly from Proposition 8.2. To address

the shape, first remember from Section 6.3 that the norm(mean = µ, sd = σ) MGF is of the

form

M(t) = exp
{
µt + σ2t2/2

}
.

Now use Proposition 8.3 to find

MX(t) =
[
M

(
t

n

)]n
,

=
[
exp

{
µ(t/n) + σ2(t/n)2/2

}]n
,

= exp
{
n ·

[
µ(t/n) + σ2(t/n)2/2

]}
,

= exp
{
µt + (σ/

√
n)2t2/2

}
,

and we recognize this last quantity as the MGF of a norm(mean = µ, sd = σ/
√
n) distribution.

�

8.2.2 The Distribution of the Sample Variance

Theorem 8.5. Let X1, X2, . . . , Xn be a SRS (n) from a norm(mean = µ, sd = σ) distribution,

and let

X =

n∑

i=1

Xi and S 2 =
1

n − 1

n∑

i=1

(Xi − X)2. (8.2.1)

Then

1. X and S 2 are independent, and

2. The rescaled sample variance

(n − 1)
σ2

S 2 =

∑n
i=1(Xi − X)2

σ2
(8.2.2)

has a chisq(df = n − 1) sampling distribution.

Proof. The proof is beyond the scope of the present book, but the theorem is simply too impor-

tant to be omitted. The interested reader could consult Casella and Berger [13], or Hogg et al

[43]. �

8.2.3 The Distribution of Student’s T Statistic

Proposition 8.6. Let X1, X2, . . . , Xn be a SRS (n) from a norm(mean = µ, sd = σ) distribution.

Then the quantity

T =
X − µ
S/
√
n

(8.2.3)

has a t(df = n − 1) sampling distribution.

Proof. Divide the numerator and denominator by σ and rewrite

T =

X−µ
σ/
√
n

S/σ
=

X−µ
σ/
√
n√

(n−1)S 2

σ2

/
(n − 1)

.
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Now let

Z =
X − µ
σ/
√
n

and V =
(n − 1)S 2

σ2
,

so that

T =
Z
√
V/r
, (8.2.4)

where r = n − 1.
We know from Section 8.2.1 that Z ∼ norm(mean = 0, sd = 1) and we know from Section

8.2.2 that V ∼ chisq(df = n − 1). Further, since we are sampling from a normal distribu-

tion, Theorem 8.5 gives that X and S 2 are independent and by Fact 7.16 so are Z and V . In

summary, the distribution of T is the same as the distribution of the quantity Z/
√
V/r, where

Z ∼ norm(mean = 0, sd = 1) and V ∼ chisq(df = r) are independent. This is in fact the

definition of Student’s t distribution. �

This distribution was first published by W. S. Gosset (1900) under the pseudonym Student,

and the distribution has consequently come to be known as Student’s t distribution. The PDF

of T can be derived explicitly using the techniques of Section 6.4; it takes the form

fX(x) =
Γ[(r + 1)/2]
√
rπ Γ(r/2)

(
1 +

x2

r

)−(r+1)/2
, −∞ < x < ∞ (8.2.5)

Any random variable X with the preceding PDF is said to have Student’s t distributionwith r

degrees of freedom, and we write X ∼ t(df = r). The shape of the PDF is similar to the normal,

but the tails are considerably heavier. See Figure 8.2.1. As with the normal distribution, there

are four functions in R associated with the t distribution, namely dt, pt, qt, and rt, which

compute the PDF, CDF, quantile function, and generate random variates, respectively.

The code to produce Figure 8.2.1 is

> curve(dt(x, df = 30), from = -3, to = 3, lwd = 3, ylab = "y")

> ind <- c(1, 2, 3, 5, 10)

> for (i in ind) curve(dt(x, df = i), -3, 3, add = TRUE)

Similar to that done for the normal we may define tα(df = n − 1) as the number on the

x-axis such that there is exactly α area under the t(df = n − 1) curve to its right.

Example 8.7. Find t0.01(df = 23) with the quantile function.

> qt(0.01, df = 23, lower.tail = FALSE)

[1] 2.499867

Remark 8.8. There are a few things to note about the t(df = r) distribution.

1. The t(df = 1) distribution is the same as the cauchy(location = 0, scale = 1)

distribution. The Cauchy distribution is rather pathological and is a counterexample to

many famous results.

2. The standard deviation of t(df = r) is undefined (that is, infinite) unless r > 2. When

r is more than 2, the standard deviation is always bigger than one, but decreases to 1 as

r →∞.

3. As r → ∞, the t(df = r) distribution approaches the norm(mean = 0, sd = 1) distribu-

tion.
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Figure 8.2.1: Student’s t distribution for various degrees of freedom

8.3 The Central Limit Theorem

In this section we study the distribution of the sample mean when the underlying distribution is

not normal. We saw in Section 8.2 that when X1, X2, . . . , Xn is a SRS (n) from a norm(mean =

µ, sd = σ) distribution then X ∼ norm(mean = µ, sd = σ/
√
n). In other words, we may say

(owing to Fact 6.24) when the underlying population is normal that the sampling distribution

of Z defined by

Z =
X − µ
σ/
√
n

(8.3.1)

is norm(mean = 0, sd = 1).

However, there are many populations that are not normal. . . and the statistician often finds

herself sampling from such populations. What can be said in this case? The surprising answer

is contained in the following theorem.

Theorem 8.9. The Central Limit Theorem. Let X1, X2, . . . , Xn be a SRS (n) from a population

distribution with mean µ and finite standard deviation σ. Then the sampling distribution of

Z =
X − µ
σ/
√
n

(8.3.2)

approaches a norm(mean = 0, sd = 1) distribution as n→∞.

Remark 8.10. We suppose that X1, X2, . . . , Xn are i.i.d., and we learned in Section 8.1.1 that X

has mean µ and standard deviation σ/
√
n, so we already knew that Z has mean 0 and standard
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deviation 1. The beauty of the CLT is that it addresses the shape of Z’s distribution when the

sample size is large.

Remark 8.11. Notice that the shape of the underlying population’s distribution is not mentioned

in Theorem 8.9; indeed, the result is true for any population that is well-behaved enough to have

a finite standard deviation. In particular, if the population is normally distributed then we know

from Section 8.2.1 that the distribution of X (and Z by extension) is exactly normal, for every

n.

Remark 8.12. How large is “sufficiently large”? It is here that the shape of the underlying

population distribution plays a role. For populations with distributions that are approximately

symmetric and mound-shaped, the samples may need to be only of size four or five, while

for highly skewed or heavy-tailed populations the samples may need to be much larger for

the distribution of the sample means to begin to show a bell-shape. Regardless, for a given

population distribution (with finite standard deviation) the approximation tends to be better for

larger sample sizes.

8.3.1 How to do it with R

The TeachingDemos package [79] has clt.examp and the distrTeach [74] package has

illustrateCLT. Try the following at the command line (output omitted):

> library(TeachingDemos)

> example(clt.examp)

and

> library(distrTeach)

> example(illustrateCLT)

The IPSUR package has the functions clt1, clt2, and clt3 (see Exercise 8.2 at the end of

this chapter). Its purpose is to investigate what happens to the sampling distribution of X when

the population distribution is mound shaped, finite support, and skewed, namely t(df = 3),

unif(a = 0, b = 10) and gamma(shape = 1.21, scale = 1/2.37), respectively.

For example, when the command clt1() is issued a plot window opens to show a graph

of the PDF of a t(df = 3) distribution. On the display are shown numerical values of the

population mean and variance. While the students examine the graph the computer is simu-

lating random samples of size sample.size = 2 from the population = "rt" distribution

a total of N.iter = 100000 times, and sample means are calculated of each sample. Next

follows a histogram of the simulated sample means, which closely approximates the sampling

distribution of X, see Section 8.5. Also show are the sample mean and sample variance of all

of the simulated Xs. As a final step, when the student clicks the second plot, a normal curve

with the same mean and variance as the simulated Xs is superimposed over the histogram. Stu-

dents should compare the population theoretical mean and variance to the simulated mean and

variance of the sampling distribution. They should also compare the shape of the simulated

sampling distribution to the shape of the normal distribution.

The three separate clt1, clt2, and clt3 functions were written so that students could

compare what happens overall when the shape of the population distribution changes. It would

be possible to combine all three into one big function, clt which covers all three cases (and

more).
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8.4 Sampling Distributions of Two-Sample Statistics

There are often two populations under consideration, and it sometimes of interest to compare

properties between groups. To do so we take independent samples from each population and

calculate respective sample statistics for comparison. In some simple cases the sampling distri-

bution of the comparison is known and easy to derive; such cases are the subject of the present

section.

8.4.1 Difference of Independent Sample Means

Proposition 8.13. Let X1, X2, . . . , Xn1 be an SRS (n1) from a norm(mean = µX, sd = σX) dis-

tribution and let Y1, Y2, . . . , Yn2 be an SRS (n2) from a norm(mean = µY , sd = σY) distribution.

Suppose that X1, X2, . . . , Xn1 and Y1, Y2, . . . , Yn2 are independent samples. Then the quantity

X − Y − (µX − µY)√
σ2

X

/
n1 + σ

2
Y

/
n2

(8.4.1)

has a norm(mean = 0, sd = 1) sampling distribution. Equivalently, X − Y has a norm(mean =

µX − µY , sd =
√
σ2

X

/
n1 + σ

2
Y

/
n2) sampling distribution.

Proof. We know that X is norm(mean = µX, sd = σX/
√
n1) and we also know that Y is

norm(mean = µY , sd = σY/
√
n2). And since the samples X1, X2, . . . , Xn1 and Y1, Y2, . . . , Yn2

are independent, so too are X and Y . The distribution of their difference is thus normal as well,

and the mean and standard deviation are given by Proposition 7.20. �

Remark 8.14. Even if the distribution of one or both of the samples is not normal, the quantity

in Equation 8.4.1 will be approximately normal provided both sample sizes are large.

Remark 8.15. For the special case of µX = µY we have shown that

X − Y
√
σ2

X
/n1 + σ

2
Y
/n2

(8.4.2)

has a norm(mean = 0, sd = 1) sampling distribution, or in other words, X−Y has a norm(mean =

0, sd =
√
σ2

X
/n1 + σ

2
Y
/n2) sampling distribution. This will be important when it comes time

to do hypothesis tests; see Section 9.3.

8.4.2 Difference of Independent Sample Proportions

Proposition 8.16. Let X1, X2, . . . , Xn1 be an SRS (n1) from a binom(size = 1, prob = p1)

distribution and let Y1, Y2, . . . , Yn2 be an SRS (n2) from a binom(size = 1, prob = p2)

distribution. Suppose that X1, X2, . . . , Xn1 and Y1, Y2, . . . , Yn2 are independent samples. Define

p̂1 =
1

n1

n1∑

i=1

Xi and p̂2 =
1

n2

n2∑

j=1

Y j. (8.4.3)

Then the sampling distribution of

p̂1 − p̂2 − (p1 − p2)√
p1(1−p1)

n1
+

p2(1−p2)
n2

(8.4.4)
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approaches a norm(mean = 0, sd = 1) distribution as both n1, n2 → ∞. In other words, the

sampling distribution of p̂1 − p̂2 is approximately

norm

mean = p1 − p2, sd =

√
p1(1 − p1)

n1
+

p2(1 − p2)

n2

 , (8.4.5)

provided both n1 and n2 are sufficiently large.

Proof. We know that p̂1 is approximately normal for n1 sufficiently large by the CLT, and we

know that p̂2 is approximately normal for n2 sufficiently large, also by the CLT. Further, p̂1
and p̂2 are independent since they are derived from independent samples. And a difference of

independent (approximately) normal distributions is (approximately) normal, by Exercise 7.31.

The expressions for the mean and standard deviation follow immediately from Proposition 7.20

combined with the formulas for the binom(size = 1, prob = p) distribution from Chapter

5. �

8.4.3 Ratio of Independent Sample Variances

Proposition 8.18. Let X1, X2, . . . , Xn1 be an SRS (n1) from a norm(mean = µX, sd = σX) dis-

tribution and let Y1, Y2, . . . , Yn2 be an SRS (n2) from a norm(mean = µY , sd = σY) distribution.

Suppose that X1, X2, . . . , Xn1 and Y1, Y2, . . . , Yn2 are independent samples. Then the ratio

F =
σ2

YS
2
X

σ2
X
S 2
Y

(8.4.6)

has an f(df1 = n1 − 1, df2 = n2 − 1) sampling distribution.

Proof. We know from Theorem 8.5 that (n1 − 1)S 2
X
/σ2

X
is distributed chisq(df = n1 − 1) and

(n2 − 1)S 2
Y/σ

2
Y is distributed chisq(df = n2 − 1). Now write

F =
σ2

Y
S 2

X

σ2
X
S 2
Y

=
(n1 − 1)S 2

Y

/
(n1 − 1)

(n2 − 1)S 2
Y

/
(n2 − 1)

·
1/σ2

X

1/σ2
Y

,

by multiplying and dividing the numerator with n1 − 1 and doing likewise for the denominator

with n2 − 1. Now we may regroup the terms into

F =

(n1−1)S 2
X

σ2
X

/
(n1 − 1)

(n2−1)S 2
Y

σ2
Y

/
(n2 − 1)

,

and we recognize F to be the ratio of independent chisq distributions, each divided by its

respective numerator df = n1 − 1 and denominator df = n1 − 1 degrees of freedom. This is,

indeed, the definition of Snedecor’s F distribution. �

1

Remark 8.17. This does not explicitly follow, because of our cavalier use of “approximately” in too many places.

To be more thorough, however, would require more concepts than we can afford at the moment. The interested

reader may consult a more advanced text, specifically the topic of weak convergence, that is, convergence in

distribution.
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Remark 8.19. For the special case of σX = σY we have shown that

F =
S 2

X

S 2
Y

(8.4.7)

has an f(df1 = n1 − 1, df2 = n2 − 1) sampling distribution. This will be important in Chapters

9 onward.

8.5 Simulated Sampling Distributions

Some comparisons are meaningful, but their sampling distribution is not quite so tidy to de-

scribe analytically. What do we do then?

As it turns out, we do not need to know the exact analytical form of the sampling distri-

bution; sometimes it is enough to approximate it with a simulated distribution. In this section

we will show you how. Note that R is particularly well suited to compute simulated sampling

distributions, much more so than, say, SPSS or SAS.

8.5.1 The Interquartile Range

> iqrs <- replicate(100, IQR(rnorm(100)))

We can look at the mean of the simulated values

> mean(iqrs) # close to 1

[1] 1.322562

and we can see the standard deviation

> sd(iqrs)

[1] 0.1694132

Now let’s take a look at a plot of the simulated values

8.5.2 The Median Absolute Deviation

> mads <- replicate(100, mad(rnorm(100)))

We can look at the mean of the simulated values

> mean(mads) # close to 1.349

[1] 0.9833985

and we can see the standard deviation

> sd(mads)

[1] 0.1139002
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Figure 8.5.1: Plot of simulated IQRs

Now let’s take a look at a plot of the simulated values
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Figure 8.5.2: Plot of simulated MADs
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Chapter Exercises

Exercise 8.1. Suppose that we observe a random sample X1, X2, . . . , Xn of size SRS (n =19)

from a norm(mean =20) distribution.

1. What is the mean of X?

2. What is the standard deviation of X?

3. What is the distribution of X? (approximately)

4. Find IP(a < X ≤ b)

5. Find IP(X > c).

Exercise 8.2. In this exercise we will investigate how the shape of the population distribution

affects the time until the distribution of X is acceptably normal.

Answer the questions and write a report about what you have learned. Use plots and histograms

to support your conclusions. See Appendix F for instructions about writing reports with R.

For these problems, the discussion/interpretation parts are the most important, so be sure to

ANSWER THE WHOLE QUESTION.

The Central Limit Theorem

For Questions 1-3, we assume that we have observed random variables X1, X2, . . . ,Xn that are

an SRS (n) from a given population (depending on the problem) and we want to investigate the

distribution of X as the sample size n increases.

1. The population of interest in this problem has a Student’s t distribution with r = 3 degrees

of freedom. We begin our investigation with a sample size of n = 2. Open an R session,

make sure to type library(IPSUR) and then follow that with clt1().

(a) Look closely and thoughtfully at the first graph. How would you describe the popu-

lation distribution? Think back to the different properties of distributions in Chapter

3. Is the graph symmetric? Skewed? Does it have heavy tails or thin tails? What

else can you say?

(b) What is the population mean µ and the population variance σ2? (Read these from

the first graph.)

(c) The second graph shows (after a few seconds) a relative frequency histogram which

closely approximates the distribution of X. Record the values of mean(xbar) and

var(xbar), where xbar denotes the vector that contains the simulated sample

means. Use the answers from part (b) to calculate what these estimates should

be, based on what you know about the theoretical mean and variance of X. How

well do your answers to parts (b) and (c) agree?

(d) Click on the histogram to superimpose a red normal curve, which is the theoretical

limit of the distribution of X as n→ ∞. How well do the histogram and the normal

curve match? Describe the differences between the two distributions. When judg-

ing between the two, do not worry so much about the scale (the graphs are being

rescaled automatically, anyway). Rather, look at the peak: does the histogram poke
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through the top of the normal curve? How about on the sides: are there patches of

white space between the histogram and line on either side (or both)? How do the

curvature of the histogram and the line compare? Check down by the tails: does the

red line drop off visibly below the level of the histogram, or do they taper off at the

same height?

(e) We can increase our sample size from 2 to 11 with the command clt1(sample.size

= 11). Return to the command prompt to do this. Answer parts (b) and (c) for this

new sample size.

(f) Go back to clt1 and increase the sample.size from 11 to 31. Answer parts (b)

and (c) for this new sample size.

(g) Comment on whether it appears that the histogram and the red curve are “noticeably

different” or whether they are “essentially the same” for the largest sample size

n = 31. If they are still “noticeably different” at n = 31, how large does n need to

be until they are “essentially the same”? (Experiment with different values of n).

2. Repeat Question 1 for the function clt2. In this problem, the population of interest has

a unif(min = 0, max = 10) distribution.

3. Repeat Question 1 for the function clt3. In this problem, the population of interest has

a gamma(shape = 1.21, rate = 1/2.37) distribution.

4. Summarize what you have learned. In your own words, what is the general trend that is

being displayed in these histograms, as the sample size n increases from 2 to 11, on to

31, and onward?

5. How would you describe the relationship between the shape of the population distribu-

tion and the speed at which X’s distribution converges to normal? In particular, consider

a population which is highly skewed. Will we need a relatively large sample size or a

relatively small sample size in order for X’s distribution to be approximately bell shaped?

Exercise 8.3. Let X1,. . . , X25 be a random sample from a norm(mean = 37, sd = 45) dis-

tribution, and let X be the sample mean of these n = 25 observations. Find the following

probabilities.

1. How is X distributed?

norm(mean = 37, sd = 45/
√
25)

2. Find IP(X > 43.1).

> pnorm(43.1, mean = 37, sd = 9, lower.tail = FALSE)

[1] 0.2489563



Chapter 9

Estimation

We will discuss two branches of estimation procedures: point estimation and interval estima-

tion. We briefly discuss point estimation first and then spend the rest of the chapter on interval

estimation.

We find an estimator with the methods of Section 9.1. We make some assumptions about the

underlying population distribution and use what we know from Chapter 8 about sampling dis-

tributions both to study how the estimator will perform, and to find intervals of confidence for

underlying parameters associated with the population distribution. Once we have confidence

intervals we can do inference in the form of hypothesis tests in the next chapter.

What do I want them to know?

• how to look at a problem, identify a reasonable model, and estimate a parameter associ-

ated with the model

• about maximum likelihood, and in particular, how to

◦ eyeball a likelihood to get a maximum

◦ use calculus to find an MLE for one-parameter families

• about properties of the estimators they find, such as bias, minimum variance, MSE

• point versus interval estimation, and how to find and interpret confidence intervals for

basic experimental designs

• the concept of margin of error and its relationship to sample size

9.1 Point Estimation

The following example is how I was introduced to maximum likelihood.

Example 9.1. Suppose we have a small pond in our backyard, and in the pond there live some

fish. We would like to know how many fish live in the pond. How can we estimate this? One

procedure developed by researchers is the capture-recapture method. Here is how it works.

We will fish from the pond and suppose that we capture M = 7 fish. On each caught fish

we attach an unobtrusive tag to the fish’s tail, and release it back into the water.

193
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Next, we wait a few days for the fish to remix and become accustomed to their new tag.

Then we go fishing again. On the second trip some of the fish we catch may be tagged; some

may not be. Let X denote the number of caught fish which are tagged1, and suppose for the

sake of argument that we catch K = 4 fish and we find that 3 of them are tagged.

Now let F denote the (unknown) total number of fish in the pond. We know that F ≥ 7,

because we tagged that many on the first trip. In fact, if we let N denote the number of untagged

fish in the pond, then F = M + N. We have sampled K = 4 times, without replacement, from

an urn which has M = 7 white balls and N = F − M black balls, and we have observed x = 3

of them to be white. What is the probability of this?

Looking back to Section 5.6, we see that the random variable X has a hyper(m = M, n =

F − M, k = K) distribution. Therefore, for an observed value X = x the probability would be

IP(X = x) =

(
M

x

)(
F−M
K−x

)

(
F

K

) .

First we notice that F must be at least 7. Could F be equal to seven? If F = 7 then all of the

fish would have been tagged on the first run, and there would be no untagged fish in the pond,

thus, IP(3 successes in 4 trials) = 0.

What about F = 8; what would be the probability of observing X = 3 tagged fish?

IP(3 successes in 4 trials) =

(
7

3

)(
1

1

)

(
8

4

) = 35

70
= 0.5.

Similarly, if F = 9 then the probability of observing X = 3 tagged fish would be

IP(3 successes in 4 trials) =

(
7

3

)(
2

1

)

(
9

4

) = 70

126
≈ 0.556.

We can see already that the observed data X = 3 is more likely when F = 9 than it is when

F = 8. And here lies the genius of Sir Ronald Aylmer Fisher: he asks, “What is the value of F

which has the highest likelihood?” In other words, for all of the different possible values of F,

which one makes the above probability the biggest? We can answer this question with a plot of

IP(X = x) versus F. See Figure 9.1.1.

Example 9.2. In the last example we were only concerned with how many fish were in the

pond, but now, we will ask a different question. Suppose it is known that there are only two

species of fish in the pond: smallmouth bass (Micropterus dolomieu) and bluegill (Lepomis

macrochirus); perhaps we built the pond some years ago and stocked it with only these two

species. We would like to estimate the proportion of fish in the pond which are bass.

Let p = the proportion of bass. Without any other information, it is conceivable for p to be

any value in the interval [0, 1], but for the sake of argument we will suppose that p falls strictly

between 0 and 1. How can we learn about the true value of p? Go fishing! As before, we

will use catch-and-release, but unlike before, we will not tag the fish. We will simply note the

species of any caught fish before returning it to the pond.

1It is theoretically possible that we could catch the same tagged fish more than once, which would inflate our

count of tagged fish. To avoid this difficulty, suppose that on the second trip we use a tank on the boat to hold the

caught fish until data collection is completed.
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Figure 9.1.1: Capture-recapture experiment

Suppose we catch n fish. Let

Xi =


1, if the ith fish is a bass,

0, if the ith fish is a bluegill.

Since we are returning the fish to the pond once caught, we may think of this as a sam-

pling scheme with replacement where the proportion of bass p does not change. Given that

we allow the fish sufficient time to “mix” once returned, it is not completely unreasonable

to model our fishing experiment as a sequence of Bernoulli trials, so that the Xi’s would be

i.i.d. binom(size = 1, prob = p). Under those assumptions we would have

IP(X1 = x1, X2 = x2, . . . , Xn = xn) = IP(X1 = x1) IP(X2 = x2) · · · IP(Xn = xn),

= px1(1 − p)x1 px2(1 − p)x2 · · · pxn(1 − p)xn ,

= p
∑

xi(1 − p)n−
∑

xi .

That is,

IP(X1 = x1, X2 = x2, . . . , Xn = xn) = p
∑

xi(1 − p)n−
∑

xi .

This last quantity is a function of p, called the likelihood function L(p):

L(p) = p
∑

xi(1 − p)n−
∑

xi .

A graph of L for values of
∑

xi = 3, 4, and 5 when n = 7 is shown in Figure 9.1.2.
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Figure 9.1.2: Assorted likelihood functions for fishing, part two

Three graphs are shown of L when
∑

xi equals 3, 4, and 5, respectively, from left to right. We pick an L

that matches the observed data and then maximize L as a function of p. If
∑

xi = 4, then the maximum

appears to occur somewhere around p ≈ 0.6.
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> curve(x^5 * (1 - x)^2, from = 0, to = 1, xlab = "p", ylab = "L(p)")

> curve(x^4 * (1 - x)^3, from = 0, to = 1, add = TRUE)

> curve(x^3 * (1 - x)^4, 0, 1, add = TRUE)

We want the value of p which has the highest likelihood, that is, we again wish to maximize

the likelihood. We know from calculus (see Appendix E.2) to differentiate L and set L′ = 0 to

find a maximum.

L′(p) =
(∑

xi
)
p
∑

xi−1(1 − p)n−
∑

xi + p
∑

xi
(
n −

∑
xi
)
(1 − p)n−

∑
xi−1(−1).

The derivative vanishes (L′ = 0) when
(∑

xi
)
p
∑

xi−1(1 − p)n−
∑

xi = p
∑

xi
(
n −

∑
xi
)
(1 − p)n−

∑
xi−1,

∑
xi(1 − p) =

(
n −

∑
xi
)
p,

∑
xi − p

∑
xi = np − p

∑
xi,

1

n

n∑

i=1

xi = p.

This “best” p, the one which maximizes the likelihood, is called the maximum likelihood esti-

mator (MLE) of p and is denoted p̂. That is,

p̂ =

∑n
i=1 xi

n
= x. (9.1.1)

Remark 9.3. Strictly speaking we have only shown that the derivative equals zero at p̂, so it

is theoretically possible that the critical value p̂ = x is located at a minimum2 instead of a

maximum! We should be thorough and check that L′ > 0 when p < x and L′ < 0 when p > x.

Then by the First Derivative Test (Theorem E.6) we could be certain that p̂ = x is indeed a

maximum likelihood estimator, and not a minimum likelihood estimator.

The result is shown in Figure 9.1.3.

In general, we have a family of PDFs f (x|θ) indexed by a parameter θ in some parameter

space Θ. We want to learn about θ. We take a SRS (n):

X1, X2, . . . , Xn which are i.i.d. f(x|θ). (9.1.2)

Definition 9.4. Given the observed data x1, x2, . . . , xn, the likelihood function L is defined by

L(θ) =

n∏

i=1

f (xi|θ), θ ∈ Θ.

The next step is to maximize L. The method we will use in this book is to find the derivative

L′ and solve the equation L′(θ) = 0. Call a solution θ̂. We will check that L is maximized at θ̂

using the First Derivative Test or the Second Derivative Test
(
L′′(θ̂) < 0

)
.

Definition 9.5. A value θ that maximizes L is called a maximum likelihood estimator (MLE)

and is denoted θ̂. It is a function of the sample, θ̂ = θ̂ (X1, X2, . . . , Xn), and is called a point

estimator of θ.

2We can tell from the graph that our value of p̂ is a maximum instead of a minimum so we do not really need

to worry for this example. Other examples are not so easy, however, and we should be careful to be cognizant of

this extra step.



198 CHAPTER 9. ESTIMATION

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

e
+

0
0

1
.0

e
−

0
8

parameter space

L
ik

e
lih

o
o
d

θ
^

= 0.3704

Figure 9.1.3: Species maximum likelihood

Remark 9.6. Some comments about maximum likelihood estimators:

• Often it is easier to maximize the log-likelihood l(θ) = ln L(θ) instead of the likelihood

L. Since the logarithmic function y = ln x is a monotone transformation, the solutions to

both problems are the same.

• MLEs do not always exist (for instance, sometimes the likelihood has a vertical asymp-

tote), and even when they do exist, they are not always unique (imagine a function with

a bunch of humps of equal height). For any given problem, there could be zero, one, or

any number of values of θ for which L(θ) is a maximum.

• The problems we encounter in this book are all very nice with likelihood functions that

have closed form representations and which are optimized by some calculus acrobatics.

In practice, however, likelihood functions are sometimes nasty in which case we are

obliged to use numerical methods to find maxima (if there are any).

• MLEs are just one of many possible estimators. One of the more popular alternatives are

the method of moments estimators; see Casella and Berger [13] for more.

Notice, in Example 9.2 we had Xi i.i.d. binom(size = 1, prob = p), and we saw that the
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MLE was p̂ = X. But further

IE X = IE
X1 + X2 + · · · + Xn

n
,

=
1

n
(IE X1 + IE X2 + · · · + IE Xn) ,

=
1

n
(np) ,

= p,

which is exactly the same as the parameter which we estimated. More concisely, IE p̂ = p, that

is, on the average, the estimator is exactly right.

Definition 9.7. Let s(X1, X2, . . . , Xn) be a statistic which estimates θ. If

IE s(X1, X2, . . . , Xn) = θ,

then the statistic s(X1, X2, . . . , Xn) is said to be an unbiased estimator of θ. Otherwise, it is

biased.

Example 9.8. Let X1, X2, . . . , Xn be an SRS (n) from a norm(mean = µ, sd = σ) distribution.

It can be shown (in Exercise 9.1) that if θ = (µ, σ2) then the MLE of θ is

θ̂ = (µ̂, σ̂2), (9.1.3)

where µ̂ = X and

σ̂2 =
1

n

n∑

i=1

(
Xi − X

)2
=

n − 1
n

S 2. (9.1.4)

We of course know from 8.2 that µ̂ is unbiased. What about σ̂2? Let us check:

IE σ̂2 = IE
n − 1
n

S 2

= IE

(
σ2

n

(n − 1)S 2

σ2

)

=
σ2

n
IE chisq(df = n − 1)

=
σ2

n
(n − 1),

from which we may conclude two things:

1. σ̂2 is a biased estimator of σ2, and

2. S 2 = nσ̂2/(n − 1) is an unbiased estimator of σ2.

One of the most common questions in an introductory statistics class is, “Why do we divide

by n − 1 when we compute the sample variance? Why do we not divide by n?” We see now

that division by n amounts to the use of a biased estimator for σ2, that is, if we divided by n

then on the average we would underestimate the true value of σ2. We use n − 1 so that, on the

average, our estimator of σ2 will be exactly right.
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9.1.1 How to do it with R

R can be used to find maximum likelihood estimators in a lot of diverse settings. We will

discuss only the most basic here and will leave the rest to more sophisticated texts.

For one parameter estimation problems we may use the optimize function to find MLEs.

The arguments are the function to be maximized (the likelihood function), the range over which

the optimization is to take place, and optionally any other arguments to be passed to the likeli-

hood if needed.

Let us see how to do Example 9.2. Recall that our likelihood function was given by

L(p) = p
∑

xi(1 − p)n−
∑

xi . (9.1.5)

Notice that the likelihood is just a product of binom(size = 1, prob = p) PMFs. We first

give some sample data (in the vector datavals), next we define the likelihood function L, and

finally we optimize L over the range c(0,1).

> x <- mtcars$am

> L <- function(p, x) prod(dbinom(x, size = 1, prob = p))

> optimize(L, interval = c(0, 1), x = x, maximum = TRUE)

$maximum

[1] 0.4062458

$objective

[1] 4.099989e-10

Note that the optimize function by default minimizes the function L, so we have to set

maximum = TRUE to get an MLE. The returned value of $maximum gives an approximate value

of the MLE to be 0.406 and $objective gives L evaluated at the MLE which is approximately

0.

We previously remarked that it is usually more numerically convenient to maximize the

log-likelihood (or minimize the negative log-likelihood), and we can just as easily do this with

R. We just need to calculate the log-likelihood beforehand which (for this example) is

−l(p) = −
∑

xi ln p −
(
n −

∑
xi
)
ln(1 − p).

It is done in R with

> minuslogL <- function(p, x) -sum(dbinom(x, size = 1, prob = p,

+ log = TRUE))

> optimize(minuslogL, interval = c(0, 1), x = x)

$minimum

[1] 0.4062525

$objective

[1] 21.61487

Note that we did not need maximum = TRUE because we minimized the negative log-

likelihood. The answer for the MLE is essentially the same as before, but the $objective

value was different, of course.

For multiparameter problems we may use a similar approach by way of the mle function in

the stats4 package.
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Example 9.9. Plant Growth. We will investigate the weight variable of the PlantGrowth

data. We will suppose that the weights constitute a random observations X1, X2,. . . , Xn that

are i.i.d. norm(mean = µ, sd = σ) which is not unreasonable based on a histogram and other

exploratory measures. We will find the MLE of θ = (µ, σ2). We claimed in Example 9.8 that

θ̂ = (µ̂, σ̂2) had the form given above. Let us check whether this is plausible numerically. The

negative log-likelihood function is

> minuslogL <- function(mu, sigma2){

+ -sum(dnorm(x, mean = mu, sd = sqrt(sigma2), log = TRUE))

+ }

Note that we omitted the data as an argument to the log-likelihood function; the only argu-

ments were the parameters over which the maximization is to take place. Now we will simulate

some data and find the MLE. The optimization algorithm requires starting values (intelligent

guesses) for the parameters. We choose values close to the sample mean and variance (which

turn out to be approximately 5 and 0.5, respectively) to illustrate the procedure.

> x <- PlantGrowth$weight

> library(stats4)

> MaxLikeEst <- mle(minuslogL, start = list(mu = 5, sigma2 = 0.5))

> summary(MaxLikeEst)

Maximum likelihood estimation

Call:

mle(minuslogl = minuslogL, start = list(mu = 5, sigma2 = 0.5))

Coefficients:

Estimate Std. Error

mu 5.0729848 0.1258666

sigma2 0.4752721 0.1227108

-2 log L: 62.82084

The outputted MLEs are shown above, and mle even gives us estimates for the standard

errors of µ̂ and σ̂2 (which were obtained by inverting the numerical Hessian matrix at the

optima; see Appendix E.6). Let us check how close the numerical MLEs came to the theoretical

MLEs:

> mean(x)

[1] 5.073

> var(x) * 29/30

[1] 0.475281

> sd(x)/sqrt(30)

[1] 0.1280195

The numerical MLEs were very close to the theoretical MLEs. We already knew that the

standard error of µ̂ = X is σ/
√
n, and the numerical estimate of this was very close too.

There is functionality in the distrTest package [74] to calculate theoretical MLEs; we

will skip examples of these for the time being.
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9.2 Confidence Intervals for Means

We are given X1, X2, . . . , Xn that are an SRS (n) from a norm(mean = µ, sd = σ) distribution,

where µ is unknown. We know that we may estimate µ with X, and we have seen that this

estimator is the MLE. But how good is our estimate? We know that

X − µ
σ/
√
n
∼ norm(mean = 0, sd = 1). (9.2.1)

For a big probability 1 − α, for instance, 95%, we can calculate the quantile zα/2. Then

IP

−zα/2 ≤
X − µ
σ/
√
n
≤ zα/2

 = 1 − α. (9.2.2)

But now consider the following string of equivalent inequalities:

−zα/2 ≤
X − µ
σ/
√
n
≤ zα/2,

−zα/2
(
σ
√
n

)
≤ X − µ ≤ zα/2

(
σ
√
n

)
,

−X − zα/2
(
σ
√
n

)
≤ −µ ≤ −X + zα/2

(
σ
√
n

)
,

X − zα/2
(
σ
√
n

)
≤ µ ≤ X + zα/2

(
σ
√
n

)
.

That is,

IP

(
X − zα/2

σ
√
n
≤ µ ≤ X + zα/2

σ
√
n

)
= 1 − α. (9.2.3)

Definition 9.10. The interval

[
X − zα/2

σ
√
n
, X + zα/2

σ
√
n

]
(9.2.4)

is a 100(1−α)% confidence interval for µ. The quantity 1−α is called the confidence coefficient.

Remark 9.11. The interval is also sometimes written more compactly as

X ± zα/2
σ
√
n
. (9.2.5)

The interpretation of confidence intervals is tricky and often mistaken by novices. When I

am teaching the concept “live” during class, I usually ask the students to imagine that my piece

of chalk represents the “unknown” parameter, and I lay it down on the desk in front of me.

Once the chalk has been lain, it is fixed; it does not move. Our goal is to estimate the parameter.

For the estimator I pick up a sheet of loose paper lying nearby. The estimation procedure is to

randomly drop the piece of paper from above, and observe where it lands. If the piece of paper

covers the piece of chalk, then we are successful – our estimator covers the parameter. If it falls

off to one side or the other, then we are unsuccessful; our interval fails to cover the parameter.
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Then I ask them: suppose we were to repeat this procedure hundreds, thousands, millions

of times. Suppose we kept track of how many times we covered and how many times we did

not. What percentage of the time would we be successful?

In the demonstration, the parameter corresponds to the chalk, the sheet of paper corresponds

to the confidence interval, and the random experiment corresponds to dropping the sheet of

paper. The percentage of the time that we are successful exactly corresponds to the confidence

coefficient. That is, if we use a 95% confidence interval, then we can say that, in the long run,

approximately 95% of our intervals will cover the true parameter (which is fixed, but unknown).

See Figure 9.2.1, which is a graphical display of these ideas.

Under the above framework, we can reason that an “interval” with a larger confidence

coefficient corresponds to a wider sheet of paper. Furthermore, the width of the confidence

interval (sheet of paper) should be somehow related to the amount of information contained in

the random sample, X1, X2, . . . , Xn. The following remarks makes these notions precise.

Remark 9.12. For a fixed confidence coefficient 1 − α,

if n increases, then the confidence interval gets SHORTER. (9.2.6)

Remark 9.13. For a fixed sample size n,

if 1 − α increases, then the confidence interval getsWIDER. (9.2.7)

Example 9.14. Results from an Experiment on Plant Growth. The PlantGrowth data

frame gives the results of an experiment to measure plant yield (as measured by the weight

of the plant). We would like to a 95% confidence interval for the mean weight of the plants.

Suppose that we know from prior research that the true population standard deviation of the

plant weights is 0.7 g.

The parameter of interest is µ, which represents the true mean weight of the population of

all plants of the particular species in the study. We will first take a look at a stemplot of the

data:

> library(aplpack)

> with(PlantGrowth, stem.leaf(weight))

1 | 2: represents 1.2

leaf unit: 0.1

n: 30

1 f | 5

s |

2 3. | 8

4 4* | 11

5 t | 3

8 f | 455

10 s | 66

13 4. | 889

(4) 5* | 1111

13 t | 2233

9 f | 555

s |

6 5. | 88

4 6* | 011

1 t | 3
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Figure 9.2.1: Simulated confidence intervals

The graph was generated by the ci.examp function from the TeachingDemos package. Fifty (50)

samples of size twenty five (25) were generated from a norm(mean = 100, sd = 10) distribution, and

each sample was used to find a 95% confidence interval for the population mean using Equation 9.2.5.

The 50 confidence intervals are represented above by horizontal lines, and the respective sample means

are denoted by vertical slashes. Confidence intervals that “cover” the true mean value of 100 are plotted

in black; those that fail to cover are plotted in a lighter color. In the plot we see that only one (1) of the

simulated intervals out of the 50 failed to cover µ = 100, which is a success rate of 98%. If the number

of generated samples were to increase from 50 to 500 to 50000, . . . , then we would expect our success

rate to approach the exact value of 95%.
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The data appear to be approximately normal with no extreme values. The data come from

a designed experiment, so it is reasonable to suppose that the observations constitute a simple

random sample of weights3. We know the population standard deviation σ = 0.70 from prior

research. We are going to use the one-sample z-interval.

> dim(PlantGrowth) # sample size is first entry

[1] 30 2

> with(PlantGrowth, mean(weight))

[1] 5.073

> qnorm(0.975)

[1] 1.959964

We find the sample mean of the data to be x = 5.073 and zα/2 = z0.025 ≈ 1.96. Our interval

is therefore

x ± zα/2
σ
√
n
= 5.073 ± 1.96 · 0.70√

30
,

which comes out to approximately [4.823, 5.323]. In conclusion, we are 95% confident that the

true mean weight µ of all plants of this species lies somewhere between 4.823 g and 5.323 g,

that is, we are 95% confident that the interval [4.823, 5.323] covers µ. See Figure

Example 9.15. Give some data with X1, X2, . . . , Xn an SRS (n) from a norm(mean = µ, sd = σ)

distribution. Maybe small sample?

1. What is the parameter of interest? in the context of the problem. Give a point estimate

for µ.

2. What are the assumptions being made in the problem? Do they meet the conditions of

the interval?

3. Calculate the interval.

4. Draw the conclusion.

Remark 9.16. What if σ is unknown? We instead use the interval

X ± zα/2
S
√
n
, (9.2.8)

where S is the sample standard deviation.

• If n is large, then X will have an approximately normal distribution regardless of the

underlying population (by the CLT) and S will be very close to the parameter σ (by

the SLLN); thus the above interval will have approximately 100(1 − α)% confidence of

covering µ.

• If n is small, then

3Actually we will see later that there is reason to believe that the observations are simple random samples from

three distinct populations. See Section 10.6.
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Figure 9.2.2: Confidence interval plot for the PlantGrowth data

The shaded portion represents 95% of the total area under the curve, and the upper and lower bounds

are the limits of the one-sample 95% confidence interval. The graph is centered at the observed sample

mean. It was generated by computing a z.test from the TeachingDemos package, storing the resulting

htest object, and plotting it with the normal.and.t.dist function from the HH package. See the

remarks in the “How to do it with R” discussion later in this section.
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◦ If the underlying population is normal then we may replace zα/2 with tα/2(df =

n − 1). The resulting 100(1 − α)% confidence interval is

X ± tα/2(df = n − 1) S
√
n

(9.2.9)

◦ if the underlying population is not normal, but approximately normal, then we may

use the t interval, Equation 9.2.9. The interval will have approximately 100(1−α)%
confidence of covering µ. However, if the population is highly skewed or the data

have outliers, then we should ask a professional statistician for advice.

The author learned of a handy acronym from AP Statistics Exam graders that summarizes the

important parts of confidence interval estimation, which is PANIC: Parameter, Assumptions,

Name, Interval, and Conclusion.

Parameter: identify the parameter of interest with the proper symbols. Write down what the

parameter means in the context of the problem.

Assumptions: list any assumptions made in the experiment. If there are any other assumptions

needed or that were not checked, state what they are and why they are important.

Name: choose a statistical procedure from your bag of tricks based on the answers to the

previous two parts. The assumptions of the procedure you choose should match those of

the problem; if they do not match then either pick a different procedure or openly admit

that the results may not be reliable. Write down any underlying formulas used.

Interval: calculate the interval from the sample data. This can be done by hand but will more

often be done with the aid of a computer. Regardless of the method, all calculations or

code should be shown so that the entire process is repeatable by a subsequent reader.

Conclusion: state the final results, using language in the context of the problem. Include the

appropriate interpretation of the interval, making reference to the confidence coefficient.

Remark 9.17. All of the above intervals for µ were two-sided, but there are also one-sided

intervals for µ. They look like

[
X − zα

σ
√
n
, ∞

)
or

(
−∞, X + zα

σ
√
n

]
(9.2.10)

and satisfy

IP

(
X − zα

σ
√
n
≤ µ

)
= 1 − α and IP

(
X + zα

σ
√
n
≥ µ

)
= 1 − α. (9.2.11)

Example 9.18. Small sample, some data with X1, X2, . . . , Xn an SRS (n) from a norm(mean =

µ, sd = σ) distribution.

1. PANIC
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9.2.1 How to do it with R

We can do Example 9.14 with the following code.

> library(TeachingDemos)

> temp <- with(PlantGrowth, z.test(weight, stdev = 0.7))

> temp

One Sample z-test

data: weight

z = 39.6942, n = 30.000, Std. Dev. = 0.700, Std. Dev. of the

sample mean = 0.128, p-value < 2.2e-16

alternative hypothesis: true mean is not equal to 0

95 percent confidence interval:

4.822513 5.323487

sample estimates:

mean of weight

5.073

The confidence interval bounds are shown in the sixth line down of the output (please

disregard all of the additional output information for now – we will use it in Chapter 10). We

can make the plot for Figure 9.2.2 with

> library(IPSUR)

> plot(temp, "Conf")

9.3 Confidence Intervals for Differences of Means

Let X1, X2, . . . , Xn be a SRS (n) from a norm(mean = µX, sd = σX) distribution and let Y1, Y2,

. . . , Ym be a SRS (m) from a norm(mean = µY , sd = σY) distribution. Further, assume that the

X1, X2, . . . , Xn sample is independent of the Y1, Y2, . . . , Ym sample.

Suppose that σX and σY are known. We would like a confidence interval for µX − µY . We

know that

X − Y ∼ norm

mean = µX − µY , sd =

√
σ2

X

n
+
σ2

Y

m

 . (9.3.1)

Therefore, a 100(1 − α)% confidence interval for µX − µY is given by

(
X − Y

)
± zα/2

√
σ2

X

n
+
σ2

Y

m
. (9.3.2)

Unfortunately, most of the time the values of σX and σY are unknown. This leads us to the

following:

• If both sample sizes are large, then we may appeal to the CLT/SLLN (see 8.3) and sub-

stitute S 2
X
and S 2

Y
for σ2

X
and σ2

Y
in the interval 9.3.2. The resulting confidence interval

will have approximately 100(1 − α)% confidence.
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• If one or more of the sample sizes is small then we are in trouble, unless

◦ the underlying populations are both normal and σX = σY . In this case (setting

σ = σX = σY),

X − Y ∼ norm

mean = µX − µY , sd = σ
√

1

n
+

1

m

 . (9.3.3)

Now let

U =
n − 1
σ2

S 2
X +

m − 1
σ2

S 2
Y . (9.3.4)

Then by Exercise 7.2 we know that U ∼ chisq(df = n + m − 2) and is not a large

leap to believe that U is independent of X − Y; thus

T =
Z

√
U/ (n + m − 2)

∼ t(df = n + m − 2). (9.3.5)

But

T =

X−Y−(µX−µY )
σ
√

1
n
+ 1

m√
n−1
σ2

S 2
X
+ m−1
σ2

S 2
Y

/
(n + m − 2)

,

=
X − Y − (µX − µY)√(
1
n
+ 1

m

) (
(n−1)S 2

X
+(m−1)S 2

Y

n+m−2

) ,

∼ t(df = n + m − 2).

Therefore a 100(1 − α)% confidence interval for µX − µY is given by

(
X − Y

)
± tα/2(df = n + m − 2) S p

√
1

n
+

1

m
, (9.3.6)

where

S p =

√
(n − 1)S 2

X
+ (m − 1)S 2

Y

n + m − 2 (9.3.7)

is called the “pooled” estimator of σ.

◦ if one of the samples is small, and both underlying populations are normal, but

σX , σY , then we may use a Welch (or Satterthwaite) approximation to the degrees

of freedom. See Welch [88], Satterthwaite [76], or Neter et al [67]. The idea is to

use an interval of the form

(
X − Y

)
± tα/2(df = r)

√
S 2

X

n
+
S 2
Y

m
, (9.3.8)

where the degrees of freedom r is chosen so that the interval has nice statistical

properties. It turns out that a good choice for r is given by

r =

(
S 2

X
/n + S 2

Y
/m

)2

1
n−1

(
S 2

X
/n

)2
+ 1

m−1

(
S 2
Y
/m

)2 , (9.3.9)

where we understand that r is rounded down to the nearest integer. The resulting

interval has approximately 100(1 − α)% confidence.
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9.3.1 How to do it with R

The basic function is t.test which has a var.equal argument that may be set to TRUE or

FALSE. The confidence interval is shown as part of the output, although there is a lot of addi-

tional information that is not needed until Chapter 10.

There is not any specific functionality to handle the z-interval for small samples, but if the

samples are large then t.test with var.equal = FALSE will be essentially the same thing.

The standard deviations are never (?) known in advance anyway so it does not really matter in

practice.

9.4 Confidence Intervals for Proportions

We would like to know p which is the “proportion of successes”. For instance, p could be:

• the proportion of U.S. citizens that support Obama,

• the proportion of smokers among adults age 18 or over,

• the proportion of people worldwide infected by the H1N1 virus.

We are given an SRS (n) X1, X2, . . . , Xn distributed binom(size = 1, prob = p). Recall from

Section 5.3 that the commonmean of these variables is IE X = p and the variance is IE(X−p)2 =
p(1− p). If we let Y = ∑

Xi, then from Section 5.3 we know that Y ∼ binom(size = n, prob =

p) and that

X =
Y

n
has IE X = p and Var(X) =

p(1 − p)

n
.

Thus if n is large (here is the CLT) then an approximate 100(1 − α)% confidence interval for p

would be given by

X ± zα/2

√
p(1 − p)

n
. (9.4.1)

OOPS. . . ! Equation 9.4.1 is of no use to us because the unknown parameter p is in the formula!

(If we knew what p was to plug in the formula then we would not need a confidence interval in

the first place.) There are two solutions to this problem.

1. Replace p with p̂ = X. Then an approximate 100(1 − α)% confidence interval for p is

given by

p̂ ± zα/2

√
p̂(1 − p̂)

n
. (9.4.2)

This approach is called the Wald interval and is also known as the asymptotic interval

because it appeals to the CLT for large sample sizes.

2. Go back to first principles. Note that

−zα/2 ≤
Y/n − p

√
p(1 − p)/n

≤ zα/2

exactly when the function f defined by

f (p) = (Y/n − p)2 − z2α/2
p(1 − p)

n
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satisfies f (p) ≤ 0. But f is quadratic in p so its graph is a parabola; it has two roots,

and these roots form the limits of the confidence interval. We can find them with the

quadratic formula (see Exercise 9.2):



p̂ +
z2
α/2

2n

 ± zα/2

√
p̂(1 − p̂)

n
+

z2
α/2

(2n)2



/ 1 +
z2
α/2

n

 (9.4.3)

This approach is called the score interval because it is based on the inversion of the

“Score test”. See Chapter 14. It is also known as theWilson interval; see Agresti [3].

For two proportions p1 and p2, we may collect independent binom(size = 1, prob = p)

samples of size n1 and n2, respectively. Let Y1 and Y2 denote the number of successes in the

respective samples.

We know that
Y1

n1
≈ norm

mean = p1, sd =

√
p1(1 − p1)

n1



and
Y2

n2
≈ norm

mean = p2, sd =

√
p2(1 − p2)

n2



so it stands to reason that an approximate 100(1 − α)% confidence interval for p1 − p2 is given

by

(p̂1 − p̂2) ± zα/2
√

p̂1(1 − p̂1)

n1
+

p̂2(1 − p̂2)

n2
, (9.4.4)

where p̂1 = Y1/n1 and p̂2 = Y2/n2.

Remark 9.19. When estimating a single proportion, one-sided intervals are sometimes needed.

They take the form 0, p̂ + zα/2
√

p̂(1 − p̂)

n

 (9.4.5)

or p̂ − zα/2
√

p̂(1 − p̂)

n
, 1

 (9.4.6)

or in other words, we know in advance that the true proportion is restricted to the interval [0, 1],

so we can truncate our confidence interval to those values on either side.

9.4.1 How to do it with R

> library(Hmisc)

> binconf(x = 7, n = 25, method = "asymptotic")

PointEst Lower Upper

0.28 0.1039957 0.4560043

> binconf(x = 7, n = 25, method = "wilson")

PointEst Lower Upper

0.28 0.1428385 0.4757661
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The default value of the method argument is wilson.

An alternate way is

> tab <- xtabs(~gender, data = RcmdrTestDrive)

> prop.test(rbind(tab), conf.level = 0.95, correct = FALSE)

1-sample proportions test without continuity correction

data: rbind(tab), null probability 0.5

X-squared = 2.881, df = 1, p-value = 0.08963

alternative hypothesis: true p is not equal to 0.5

95 percent confidence interval:

0.4898844 0.6381406

sample estimates:

p

0.5654762

> A <- as.data.frame(Titanic)

> library(reshape)

> B <- with(A, untable(A, Freq))

9.5 Confidence Intervals for Variances

I am thinking one and two sample problems here.

9.5.1 How to do it with R

I am thinking about sigma.test in the TeachingDemos package and var.test in base R here.

9.6 Fitting Distributions

9.6.1 How to do it with R

I am thinking about fitdistr from the MASS package [84].

9.7 Sample Size and Margin of Error

Sections 9.2 through 9.5 all began the same way: we were given the sample size n and the

confidence coefficient 1 − α, and our task was to find a margin of error E so that

θ̂ ± E is a 100(1 − α)% confidence interval for θ.

Some examples we saw were:

• E = zα/2σ/
√
n, in the one-sample z-interval,

• E = tα/2(df = n + m − 2)S p

√
n−1 + m−1, in the two-sample pooled t-interval.
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We already know (we can see in the formulas above) that E decreases as n increases. Now we

would like to use this information to our advantage: suppose that we have a fixed margin of

error E, say E = 3, and we want a 100(1−α)% confidence interval for µ. The question is: how

big does n have to be?

For the case of a population mean the answer is easy: we set up an equation and solve for

n.

Example 9.20. Given a situation, given σ, given E, we would like to know how big n has to be

to ensure that X ± 5 is a 95% confidence interval for µ.

Remark 9.21.

1. Always round up any decimal values of n, no matter how small the decimal is.

2. Another name for E is the “maximum error of the estimate”.

For proportions, recall that the asymptotic formula to estimate p was

p̂ ± zα/2

√
p̂(1 − p̂)

n
.

Reasoning as above we would want

E = zα/2

√
p̂(1 − p̂)

n
, or (9.7.1)

n = z2α/2
p̂(1 − p̂)

E2
. (9.7.2)

OOPS! Recall that p̂ = Y/n, which would put the variable n on both sides of Equation 9.7.2.

Again, there are two solutions to the problem.

1. If we have a good idea of what p is, say p∗ then we can plug it in to get

n = z2α/2
p∗(1 − p∗)

E2
. (9.7.3)

2. Even if we have no idea what p is, we do know from calculus that p(1 − p) ≤ 1/4

because the function f (x) = x(1 − x) is quadratic (so its graph is a parabola which opens

downward) with maximum value attained at x = 1/2. Therefore, regardless of our choice

for p∗ the sample size must satisfy

n = z2α/2
p∗(1 − p∗)

E2
≤

z2
α/2

4E2
. (9.7.4)

The quantity z2
α/2/4E

2 is large enough to guarantee 100(1 − α)% confidence.

Example 9.22. Proportion example

Remark 9.23. For very small populations sometimes the value of n obtained from the formula

is too big. In this case we should use the hypergeometric distribution for a sampling model

rather than the binomial model. With this modification the formulas change to the following:

if N denotes the population size then let

m = z2α/2
p∗(1 − p∗)

E2
(9.7.5)

and the sample size needed to ensure 100(1 − α)% confidence is achieved is

n =
m

1 + m−1
N

. (9.7.6)

If we do not have a good value for the estimate p∗ then we may use p∗ = 1/2.
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9.7.1 How to do it with R

I am thinking about power.t.test, power.prop.test, power.anova.test, and I am also thinking about

replicate.

9.8 Other Topics

Mention mle from the stats4 package.
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Chapter Exercises

Exercise 9.1. Let X1, X2, . . . , Xn be an SRS (n) from a norm(mean = µ, sd = σ) distribution.

Find a two-dimensional MLE for θ = (µ, σ).

Exercise 9.2. Find the upper and lower limits for the confidence interval procedure by finding

the roots of f defined by

f (p) = (Y/n − p)2 − z2α/2
p(1 − p)

n
.

You are going to need the quadratic formula.
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Chapter 10

Hypothesis Testing

What do I want them to know?

• basic terminology and philosophy of the Neyman-Pearson paradigm

• classical hypothesis tests for the standard one and two sample problems with means,

variances, and proportions

• the notion of between versus within group variation and how it plays out with one-way

ANOVA

• the concept of statistical power and its relation to sample size

10.1 Introduction

I spent a week during the summer of 2005 at the University of Nebraska at Lincoln grading Ad-

vanced Placement Statistics exams, and while I was there I attended a presentation by Dr. Roxy

Peck. At the end of her talk she described an activity she had used with students to introduce

the basic concepts of hypothesis testing. I was impressed by the activity and have used it in my

own classes several times since.

The instructor (with a box of cookies in hand) enters a class of fifteen or more students and

produces a brand-new, sealed deck of ordinary playing cards. The instructor asks for a student

volunteer to break the seal, and then the instructor prominently shuffles the deck1 several times

in front of the class, after which time the students are asked to line up in a row. They are going

to play a game. Each student will draw a card from the top of the deck, in turn. If the card is

black, then the lucky student will get a cookie. If the card is red, then the unlucky student will

sit down empty-handed. Let the game begin.

The first student draws a card: red. There are jeers and outbursts, and the student slinks off

to his/her chair. (S)he is disappointed, of course, but not really. After all, (s)he had a 50-50

chance of getting black, and it did not happen. Oh well.

The second student draws a card: red, again. There are more jeers, and the second student

slips away. This student is also disappointed, but again, not so much, because it is probably

his/her unlucky day. On to the next student.

The student draws: red again! There are a few wiseguys who yell (happy to make noise,

more than anything else), but there are a few other students who are not yelling any more –

they are thinking. This is the third red in a row, which is possible, of course, but what is going

1The jokers are removed before shuffling.

217
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on, here? They are not quite sure. They are now concentrating on the next card. . . it is bound

to be black, right?

The fourth student draws: red. Hmmm. . . now there are groans instead of outbursts. A few

of the students at the end of the line shrug their shoulders and start to make their way back to

their desk, complaining that the teacher does not want to give away any cookies. There are still

some students in line though, salivating, waiting for the inevitable black to appear.

The fifth student draws red. Now it isn’t funny any more. As the remaining students make

their way back to their seats an uproar ensues, from an entire classroom demanding cookies.

Keep the preceding experiment in the back of your mind as you read the following sections.

When you have finished the entire chapter, come back and read this introduction again. All of

the mathematical jargon that follows is connected to the above paragraphs. In the meantime, I

will get you started:

Null hypothesis: it is an ordinary deck of playing cards, shuffled thoroughly.

Alternative hypothesis: either it is a trick deck of cards, or the instructor did some fancy

shufflework.

Observed data: a sequence of draws from the deck, five reds in a row.

If it were truly an ordinary, well-shuffled deck of cards, the probability of observing zero blacks

out of a sample of size five (without replacement) from a deck with 26 black cards and 26 red

cards would be

> dhyper(0, m = 26, n = 26, k = 5)

[1] 0.02531012

There are two very important final thoughts. First, everybody gets a cookie in the end.

Second, the students invariably (and aggressively) attempt to get me to open up the deck and

reveal the true nature of the cards. I never do.

10.2 Tests for Proportions

Example 10.1. We have a machine that makes widgets.

• Under normal operation, about 0.10 of the widgets produced are defective.

• Go out and purchase a torque converter.

• Install the torque converter, and observe n = 100 widgets from the machine.

• Let Y = number of defective widgets observed.

If

• Y = 0, then the torque converter is great!

• Y = 4, then the torque converter seems to be helping.

• Y = 9, then there is not much evidence that the torque converter helps.
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• Y = 17, then throw away the torque converter.

Let p denote the proportion of defectives produced by the machine. Before the installation of

the torque converter p was 0.10. Then we installed the torque converter. Did p change? Did it

go up or down? We use statistics to decide. Our method is to observe data and construct a 95%

confidence interval for p,

p̂ ± zα/2

√
p̂(1 − p̂)

n
. (10.2.1)

If the confidence interval is

• [0.01, 0.05], then we are 95% confident that 0.01 ≤ p ≤ 0.05, so there is evidence that

the torque converter is helping.

• [0.15, 0.19], then we are 95% confident that 0.15 ≤ p ≤ 0.19, so there is evidence that

the torque converter is hurting.

• [0.07, 0.11], then there is not enough evidence to conclude that the torque converter is

doing anything at all, positive or negative.

10.2.1 Terminology

The null hypothesis H0 is a “nothing” hypothesis, whose interpretation could be that nothing

has changed, there is no difference, there is nothing special taking place, etc.. In Example 10.1

the null hypothesis would be H0 : p = 0.10. The alternative hypothesis H1 is the hypothesis

that something has changed, in this case, H1 : p , 0.10. Our goal is to statistically test the

hypothesis H0 : p = 0.10 versus the alternative H1 : p , 0.10. Our procedure will be:

1. Go out and collect some data, in particular, a simple random sample of observations from

the machine.

2. Suppose that H0 is true and construct a 100(1 − α)% confidence interval for p.

3. If the confidence interval does not cover p = 0.10, then we rejectH0. Otherwise, we fail

to rejectH0.

Remark 10.2. Every time we make a decision it is possible to be wrong, and there are two

possible mistakes that we could make. We have committed a

Type I Error if we reject H0 when in fact H0 is true. This would be akin to convicting an

innocent person for a crime (s)he did not commit.

Type II Error if we fail to reject H0 when in fact H1 is true. This is analogous to a guilty

person escaping conviction.

Type I Errors are usually considered worse2, and we design our statistical procedures to control

the probability of making such a mistake. We define the

significance level of the test = IP(Type I Error) = α. (10.2.2)

We want α to be small which conventionally means, say, α = 0.05, α = 0.01, or α = 0.005 (but

could mean anything, in principle).

2There is no mathematical difference between the errors, however. The bottom line is that we choose one type

of error to control with an iron fist, and we try to minimize the probability of making the other type. That being

said, null hypotheses are often by design to correspond to the “simpler” model, so it is often easier to analyze (and

thereby control) the probabilities associated with Type I Errors.
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• The rejection region (also known as the critical region) for the test is the set of sample

values which would result in the rejection of H0. For Example 10.1, the rejection region

would be all possible samples that result in a 95% confidence interval that does not cover

p = 0.10.

• The above example with H1 : p , 0.10 is called a two-sided test. Many times we are

interested in a one-sided test, which would look like H1 : p < 0.10 or H1 : p > 0.10.

We are ready for tests of hypotheses for one proportion.

Table here.

Don’t forget the assumptions.

Example 10.3. Find

1. The null and alternative hypotheses

2. Check your assumptions.

3. Define a critical region with an α = 0.05 significance level.

4. Calculate the value of the test statistic and state your conclusion.

Example 10.4. Suppose p = the proportion of students who are admitted to the graduate

school of the University of California at Berkeley, and suppose that a public relations officer

boasts that UCB has historically had a 40% acceptance rate for its graduate school. Consider

the data stored in the table UCBAdmissions from 1973. Assuming these observations consti-

tuted a simple random sample, are they consistent with the officer’s claim, or do they provide

evidence that the acceptance rate was significantly less than 40%? Use an α = 0.01 significance

level.

Our null hypothesis in this problem is H0 : p = 0.4 and the alternative hypothesis is

H1 : p < 0.4. We reject the null hypothesis if p̂ is too small, that is, if

p̂ − 0.4
√
0.4(1 − 0.4)/n

< −zα, (10.2.3)

where α = 0.01 and −z0.01 is

> -qnorm(0.99)

[1] -2.326348

Our only remaining task is to find the value of the test statistic and see where it falls relative

to the critical value. We can find the number of people admitted and not admitted to the UCB

graduate school with the following.

> A <- as.data.frame(UCBAdmissions)

> head(A)

Admit Gender Dept Freq

1 Admitted Male A 512

2 Rejected Male A 313

3 Admitted Female A 89

4 Rejected Female A 19

5 Admitted Male B 353

6 Rejected Male B 207
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> xtabs(Freq ~ Admit, data = A)

Admit

Admitted Rejected

1755 2771

Now we calculate the value of the test statistic.

> phat <- 1755/(1755 + 2771)

> (phat - 0.4)/sqrt(0.4 * 0.6/(1755 + 2771))

[1] -1.680919

Our test statistic is not less than −2.32, so it does not fall into the critical region. Therefore,
we fail to reject the null hypothesis that the true proportion of students admitted to graduate

school is less than 40% and say that the observed data are consistent with the officer’s claim at

the α = 0.01 significance level.

Example 10.5. We are going to do Example 10.4 all over again. Everything will be exactly

the same except for one change. Suppose we choose significance level α = 0.05 instead of

α = 0.01. Are the 1973 data consistent with the officer’s claim?

Our null and alternative hypotheses are the same. Our observed test statistic is the same: it

was approximately −1.68. But notice that our critical value has changed: α = 0.05 and −z0.05
is

> -qnorm(0.95)

[1] -1.644854

Our test statistic is less than −1.64 so it now falls into the critical region! We now reject

the null hypothesis and conclude that the 1973 data provide evidence that the true proportion of

students admitted to the graduate school of UCB in 1973 was significantly less than 40%. The

data are not consistent with the officer’s claim at the α = 0.05 significance level.

What is going on, here? If we choose α = 0.05 then we reject the null hypothesis, but

if we choose α = 0.01 then we fail to reject the null hypothesis. Our final conclusion seems

to depend on our selection of the significance level. This is bad; for a particular test, we

never know whether our conclusion would have been different if we had chosen a different

significance level.

Or do we?

Clearly, for some significance levels we reject, and for some significance levels we do not.

Where is the boundary? That is, what is the significance level for which we would reject at any

significance level bigger, and we would fail to reject at any significance level smaller? This

boundary value has a special name: it is called the p-value of the test.

Definition 10.6. The p-value, or observed significance level, of a hypothesis test is the proba-

bility when the null hypothesis is true of obtaining the observed value of the test statistic (such

as p̂) or values more extreme – meaning, in the direction of the alternative hypothesis3.

3Bickel and Doksum [7] state the definition particularly well: the p-value is “the smallest level of significance

α at which an experimenter using [the test statistic] T would reject [H0] on the basis of the observed [sample]

outcome x”.
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Example 10.7. Calculate the p-value for the test in Examples 10.4 and 10.5.

The p-value for this test is the probability of obtaining a z-score equal to our observed test

statistic (which had z-score ≈ −1.680919) or more extreme, which in this example is less than

the observed test statistic. In other words, we want to know the area under a standard normal

curve on the interval (−∞, −1.680919]. We can get this easily with

> pnorm(-1.680919)

[1] 0.04638932

We see that the p-value is strictly between the significance levels α = 0.01 and α = 0.05.

This makes sense: it has to be bigger than α = 0.01 (otherwise we would have rejected H0 in

Example 10.4) and it must also be smaller than α = 0.05 (otherwise we would not have rejected

H0 in Example 10.5). Indeed, p-values are a characteristic indicator of whether or not we would

have rejected at assorted significance levels, and for this reason a statistician will often skip the

calculation of critical regions and critical values entirely. If (s)he knows the p-value, then (s)he

knows immediately whether or not (s)he would have rejected at any given significance level.

Thus, another way to phrase our significance test procedure is: we will reject H0 at the

α-level of significance if the p-value is less than α.

Remark 10.8. If we have two populations with proportions p1 and p2 then we can test the null

hypothesis H0 : p1 = p2.

Table Here.

Example 10.9. Example.

10.2.2 How to do it with R

The following does the test.

> prop.test(1755, 1755 + 2771, p = 0.4, alternative = "less",

+ conf.level = 0.99, correct = FALSE)

1-sample proportions test without continuity correction

data: 1755 out of 1755 + 2771, null probability 0.4

X-squared = 2.8255, df = 1, p-value = 0.04639

alternative hypothesis: true p is less than 0.4

99 percent confidence interval:

0.0000000 0.4047326

sample estimates:

p

0.3877596

Do the following to make the plot.

> library(IPSUR)

> library(HH)

> temp <- prop.test(1755, 1755 + 2771, p = 0.4, alternative = "less",

+ conf.level = 0.99, correct = FALSE)

> plot(temp, "Hypoth")

Use Yates’ continuity correction when the expected frequency of successes is less than 10.

You can use it all of the time, but you will have a decrease in power. For large samples the

correction does not matter.
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Figure 10.2.1: Hypothesis test plot based on normal.and.t.dist from the HH package

This plot shows all of the important features of hypothesis tests in one magnificent display. The (asymp-

totic) distribution of the test statistic (under the null hypothesis) is standard normal, represented by the

bell curve, above. We see the critical region to the left, and the blue shaded area is the significance level,

which for this example is α = 0.05. The area outlined in green is the p-value, and the observed test

statistic determines the upper bound of this region. We can see clearly that the p-value is larger than the

significance level, thus, we would not reject the null hypothesis. There are all sorts of tick marks shown

below the graph which detail how the different pieces are measured on different scales (the original

data scale, the standardized scale, etc.). The workhorse behind the plot is the normal.and.t.dist

function from the HH package. See the discussion in “How to do it with R” for the exact sequence of

commands to generate the plot.
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With the R Commander If you already know the number of successes and failures, then you

can use the menu Statistics ⊲ Proportions ⊲ IPSUR Enter table for single sample. . .

Otherwise, your data – the raw successes and failures – should be in a column of the Active

Data Set. Furthermore, the data must be stored as a “factor” internally. If the data are not a

factor but are numeric then you can use the menu Data ⊲ Manage variables in active data

set ⊲ Convert numeric variables to factors. . . to convert the variable to a factor. Or, you can

always use the factor function.

Once your unsummarized data is a column, then you can use the menu Statistics ⊲ Propor-

tions ⊲ Single-sample proportion test. . .

10.3 One Sample Tests for Means and Variances

10.3.1 For Means

Here, X1, X2, . . . , Xn are a SRS (n) from a norm(mean = µ, sd = σ) distribution. We would

like to test H0 : µ = µ0.

Case A: Suppose σ is known. Then under H0,

Z =
X − µ0
σ/
√
n
∼ norm(mean = 0, sd = 1).

Table here.

Case B: When σ is unknown, under H0

T =
X − µ0
S/
√
n
∼ t(df = n − 1).

Table here.

Remark 10.10. If σ is unknown but n is large then we can use the z-test.

Example 10.11. In this example we

1. Find the null and alternative hypotheses.

2. Choose a test and find the critical region.

3. Calculate the value of the test statistic and state the conclusion.

4. Find the p-value.

Remark 10.12. Remarks

• p-values are also known as tail end probabilities. We reject H0 when the p-value is small.

• σ/
√
n when σ is known, is called the standard error of the sample mean. In general,

if we have an estimator θ̂ then σθ̂ is called the standard error of θ̂. We usually need to

estimate σθ̂ with σ̂θ̂.
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10.3.2 How to do it with R

I am thinking z.test in TeachingDemos, t.test in base R.

> x <- rnorm(37, mean = 2, sd = 3)

> library(TeachingDemos)

> z.test(x, mu = 1, sd = 3, conf.level = 0.9)

One Sample z-test

data: x

z = 2.8126, n = 37.000, Std. Dev. = 3.000, Std. Dev. of the sample

mean = 0.493, p-value = 0.004914

alternative hypothesis: true mean is not equal to 1

90 percent confidence interval:

1.575948 3.198422

sample estimates:

mean of x

2.387185

The RcmdrPlugin.IPSUR package does not have a menu for z.test yet.

> x <- rnorm(13, mean = 2, sd = 3)

> t.test(x, mu = 0, conf.level = 0.9, alternative = "greater")

One Sample t-test

data: x

t = 1.2949, df = 12, p-value = 0.1099

alternative hypothesis: true mean is greater than 0

90 percent confidence interval:

-0.05064006 Inf

sample estimates:

mean of x

1.068850

With the R Commander Your data should be in a single numeric column (a variable) of the

Active Data Set. Use the menu Statistics ⊲ Means ⊲ Single-sample t-test. . .

10.3.3 Tests for a Variance

Here, X1, X2, . . . , Xn are a SRS (n) from a norm(mean = µ, sd = σ) distribution. We would

like to test H0 : σ
2 = σ0. We know that under H0,

X2 =
(n − 1)S 2

σ2
∼ chisq(df = n − 1).

Table here.

Example 10.13. Give some data and a hypothesis.

1. Give an α-level and test the critical region way.

2. Find the p-value for the test.
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Figure 10.3.1: Hypothesis test plot based on normal.and.t.dist from the HH package

This plot shows the important features of hypothesis tests.
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10.3.4 How to do it with R

I am thinking about sigma.test in the TeachingDemos package.

> library(TeachingDemos)

> sigma.test(women$height, sigma = 8)

One sample Chi-squared test for variance

data: women$height

X-squared = 4.375, df = 14, p-value = 0.01449

alternative hypothesis: true variance is not equal to 64

95 percent confidence interval:

10.72019 49.74483

sample estimates:

var of women$height

20

10.4 Two-Sample Tests for Means and Variances

The basic idea for this section is the following. We have X ∼ norm(mean = µX, sd = σX) and

Y ∼ norm(mean = µY , sd = σY). distributed independently. We would like to know whether X

and Y come from the same population distribution, that is, we would like to know:

Does X
d
= Y? (10.4.1)

where the symbol
d
= means equality of probability distributions.

Since both X and Y are normal, we may rephrase the question:

Does µX = µY and σX = σY? (10.4.2)

Suppose first that we do not know the values of σX and σY , but we know that they are equal,

σX = σY . Our test would then simplify to H0 : µX = µY . We collect data X1, X2, . . . , Xn

and Y1, Y2, . . . , Ym, both simple random samples of size n and m from their respective normal

distributions. Then under H0 (that is, assuming H0 is true) we have µX = µY or rewriting,

µX − µY = 0, so

T =
X − Y

S p

√
1
n
+ 1

m

=
X − Y − (µX − µY )

S p

√
1
n
+ 1

m

∼ t(df = n + m − 2). (10.4.3)

10.4.1 Independent Samples

Remark 10.14. If the values of σX and σY are known, then we can plug them in to our statistic:

Z =
X − Y√

σ2
X
/n + σ2

Y
/m

; (10.4.4)

the result will have a norm(mean = 0, sd = 1) distribution when H0 : µX = µY is true.
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Remark 10.15. Even if the values of σX and σY are not known, if both n and m are large then

we can plug in the sample estimates and the result will have approximately a norm(mean =

0, sd = 1) distribution when H0 : µX = µY is true.

Z =
X − Y√

S 2
X
/n + S 2

Y
/m

. (10.4.5)

Remark 10.16. It is usually important to construct side-by-side boxplots and other visual dis-

plays in concert with the hypothesis test. This gives a visual comparison of the samples and

helps to identify departures from the test’s assumptions – such as outliers.

Remark 10.17. WATCH YOUR ASSUMPTIONS.

• The normality assumption can be relaxed as long as the population distributions are not

highly skewed.

• The equal variance assumption can be relaxed as long as both sample sizes n and m are

large. However, if one (or both) samples is small, then the test does not perform well; we

should instead use the methods of Chapter 13.

For a nonparametric alternative to the two-sample F test see Chapter 15.

10.4.2 Paired Samples

10.4.3 How to do it with R

> t.test(extra ~ group, data = sleep, paired = TRUE)

Paired t-test

data: extra by group

t = -4.0621, df = 9, p-value = 0.002833

alternative hypothesis: true difference in means is not equal to 0

95 percent confidence interval:

-2.4598858 -0.7001142

sample estimates:

mean of the differences

-1.58

10.5 Other Hypothesis Tests

10.5.1 Kolmogorov-Smirnov Goodness-of-Fit Test

10.5.2 How to do it with R

> ks.test(randu$x, "punif")

One-sample Kolmogorov-Smirnov test

data: randu$x

D = 0.0555, p-value = 0.1697

alternative hypothesis: two-sided
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10.5.3 Shapiro-Wilk Normality Test

10.5.4 How to do it with R

> shapiro.test(women$height)

Shapiro-Wilk normality test

data: women$height

W = 0.9636, p-value = 0.7545

10.6 Analysis of Variance

10.6.1 How to do it with R

I am thinking

> with(chickwts, by(weight, feed, shapiro.test))

feed: casein

Shapiro-Wilk normality test

data: dd[x, ]

W = 0.9166, p-value = 0.2592

--------------------------------------------------------

feed: horsebean

Shapiro-Wilk normality test

data: dd[x, ]

W = 0.9376, p-value = 0.5265

--------------------------------------------------------

feed: linseed

Shapiro-Wilk normality test

data: dd[x, ]

W = 0.9693, p-value = 0.9035

--------------------------------------------------------

feed: meatmeal

Shapiro-Wilk normality test

data: dd[x, ]



230 CHAPTER 10. HYPOTHESIS TESTING

W = 0.9791, p-value = 0.9612

--------------------------------------------------------

feed: soybean

Shapiro-Wilk normality test

data: dd[x, ]

W = 0.9464, p-value = 0.5064

--------------------------------------------------------

feed: sunflower

Shapiro-Wilk normality test

data: dd[x, ]

W = 0.9281, p-value = 0.3603

and

> temp <- lm(weight ~ feed, data = chickwts)

and

> anova(temp)

Analysis of Variance Table

Response: weight

Df Sum Sq Mean Sq F value Pr(>F)

feed 5 231129 46226 15.365 5.936e-10 ***

Residuals 65 195556 3009

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Plot for the intuition of between versus within group variation.

Plots for the hypothesis tests:

10.7 Sample Size and Power

The power function of a test for a parameter θ is

β(θ) = IP
θ
(Reject H0), −∞ < θ < ∞.

Here are some properties of power functions:

1. β(θ) ≤ α for any θ ∈ Θ0, and β(θ0) = α. We interpret this by saying that no matter what

value θ takes inside the null parameter space, there is never more than a chance of α of

rejecting the null hypothesis. We have controlled the Type I error rate to be no greater

than α.
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Figure 10.6.1: Between group versus within group variation

2. limn→∞ β(θ) = 1 for any fixed θ ∈ Θ1. In other words, as the sample size grows without

bound we are able to detect a nonnull value of θ with increasing accuracy, no matter

how close it lies to the null parameter space. This may appear to be a good thing at first

glance, but it often turns out to be a curse. For another interpretation is that our Type II

error rate grows as the sample size increases.

10.7.1 How to do it with R

I am thinking about replicate here, and also power.examp from the TeachingDemos pack-

age. There is an even better plot in upcoming work from the HH package.
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Chapter Exercises
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Figure 10.7.1: Plot of significance level and power

This graph was generated by the power.examp function from the TeachingDemos package. The plot

corresponds to the hypothesis test H0 : µ = µ0 versus H1 : µ = µ1 (where µ0 = 0 and µ1 = 1, by

default) based on a single observation X ∼ norm(mean = µ, sd = σ). The top graph is of the H0

density while the bottom is of the H1 density. The significance level is set at α = 0.05, the sample size is

n = 1, and the standard deviation is σ = 1. The pink area is the significance level, and the critical value

z0.05 ≈ 1.645 is marked at the left boundary – this defines the rejection region. When H0 is true, the

probability of falling in the rejection region is exactly α = 0.05. The same rejection region is marked on

the bottom graph, and the probability of falling in it (when H1 is true) is the blue area shown at the top

of the display to be approximately 0.26. This probability represents the power to detect a non-null mean

value of µ = 1. With the command the run.power.examp() at the command line the same plot opens,

but in addition, there are sliders available that allow the user to interactively change the sample size n,

the standard deviation σ, the true difference between the means µ1 −µ0, and the significance level α. By
playing around the student can investigate the effect each of the aforementioned parameters has on the

statistical power. Note that you need the tkrplot package for run.power.examp.



Chapter 11

Simple Linear Regression

What do I want them to know?

• basic philosophy of SLR and the regression assumptions

• point and interval estimation of the model parameters, and how to use it to make predic-

tions

• point and interval estimation of future observations from the model

• regression diagnostics, including R2 and basic residual analysis

• the concept of influential versus outlying observations, and how to tell the difference

11.1 Basic Philosophy

Here we have two variables X and Y . For our purposes, X is not random (so we will write x),

but Y is random. We believe that Y depends in some way on x. Some typical examples of (x, Y)

pairs are

• x = study time and Y = score on a test.

• x = height and Y = weight.

• x = smoking frequency and Y = age of first heart attack.

Given information about the relationship between x and Y , we would like to predict future

values of Y for particular values of x. This turns out to be a difficult problem1, so instead we

first tackle an easier problem: we estimate IE Y . How can we accomplish this? Well, we know

that Y depends somehow on x, so it stands to reason that

IE Y = µ(x), a function of x. (11.1.1)

But we should be able to say more than that. To focus our efforts we impose some structure on

the functional form of µ. For instance,

• if µ(x) = β0 + β1x, we try to estimate β0 and β1.

• if µ(x) = β0 + β1x + β2x
2 , we try to estimate β0, β1, and β2.

1Yogi Berra once said, “It is always difficult to make predictions, especially about the future.”

235
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• if µ(x) = β0e
β1x, we try to estimate β0 and β1.

This helps us in the sense that we concentrate on the estimation of just a few parameters, β0 and

β1, say, rather than some nebulous function. Our modus operandi is simply to perform the ran-

dom experiment n times and observe the n ordered pairs of data (x1, Y1), (x2, Y2), . . . , (xn, Yn).

We use these n data points to estimate the parameters.

More to the point, there are three simple linear regression (SLR) assumptions that will form

the basis for the rest of this chapter:

Assumption 11.1. We assume that µ is a linear function of x, that is,

µ(x) = β0 + β1x, (11.1.2)

where β0 and β1 are unknown constants to be estimated.

Assumption 11.2. We further assume that Yi is µ(xi) – the “signal” – plus some “error” (rep-

resented by the symbol ǫi):

Yi = β0 + β1xi + ǫi, i = 1, 2, . . . , n. (11.1.3)

Assumption 11.3. We lastly assume that the errors are i.i.d. normal with mean 0 and variance

σ2:

ǫ1, ǫ2, . . . , ǫn ∼ norm(mean = 0, sd = σ). (11.1.4)

Remark 11.4. We assume both the normality of the errors ǫ and the linearity of the mean

function µ. Recall from Proposition 7.27 of Chapter 7 that if (X, Y) ∼ mvnorm then the mean

of Y |x is a linear function of x. This is not a coincidence. In more advanced classes we study the

case that both X and Y are random, and in particular, when they are jointly normally distributed.

What does it all mean?

See Figure 11.1.1. Shown in the figure is a solid line, the regression line µ, which in this display

has slope 0.5 and y-intercept 2.5, that is, µ(x) = 2.5 + 0.5x. The intuition is that for each given

value of x, we observe a random value of Y which is normally distributed with a mean equal

to the height of the regression line at that x value. Normal densities are superimposed on the

plot to drive this point home; in principle, the densities stand outside of the page, perpendicular

to the plane of the paper. The figure shows three such values of x, namely, x = 1, x = 2.5,

and x = 4. Not only do we assume that the observations at the three locations are independent,

but we also assume that their distributions have the same spread. In mathematical terms this

means that the normal densities all along the line have identical standard deviations – there is

no “fanning out” or “scrunching in” of the normal densities as x increases2.

Example 11.5. Speed and stopping distance of cars. We will use the data frame cars from

the datasets package. It has two variables: speed and dist. We can take a look at some of

the values in the data frame:

2In practical terms, this constant variance assumption is often violated, in that we often observe scatterplots

that fan out from the line as x gets large or small. We say under those circumstances that the data show het-

eroscedasticity. There are methods to address it, but they fall outside the realm of SLR.
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Figure 11.1.2: Scatterplot of dist versus speed for the cars data

> head(cars)

speed dist

1 4 2

2 4 10

3 7 4

4 7 22

5 8 16

6 9 10

The speed represents how fast the car was going (x) in miles per hour and dist (Y) mea-

sures how far it took the car to stop, in feet. We can make a simple scatterplot of the data with

the command plot(dist ~speed, data = cars).

You can see the output in Figure 11.1.2, which was produced by the following code.

> plot(dist ~ speed, data = cars)

There is a pronounced upward trend to the data points, and the pattern looks approximately

linear. There does not appear to be substantial fanning out of the points or extreme values.
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11.2 Estimation

11.2.1 Point Estimates of the Parameters

Where is µ(x)? In essence, we would like to “fit” a line to the points. But how do we determine

a “good” line? Is there a best line? We will use maximum likelihood to find it. We know:

Yi = β0 + β1xi + ǫi, i = 1, . . . , n, (11.2.1)

where the ǫi’s are i.i.d. norm(mean = 0, sd = σ). Thus Yi ∼ norm(mean = β0 + β1xi, sd =

σ), i = 1, . . . , n. Furthermore, Y1, . . . , Yn are independent – but not identically distributed. The

likelihood function is:

L(β0, β1, σ) =

n∏

i=1

fYi(yi), (11.2.2)

=

n∏

i=1

(2πσ2)−1/2 exp

{
−(yi − β0 − β1xi)2

2σ2

}
, (11.2.3)

=(2πσ2)−n/2 exp

{
−∑n

i=1(yi − β0 − β1xi)2

2σ2

}
. (11.2.4)

We take the natural logarithm to get

ln L(β0, β1, σ) = −
n

2
ln(2πσ2) −

∑n
i=1(yi − β0 − β1xi)2

2σ2
. (11.2.5)

We would like to maximize this function of β0 and β1. See Appendix E.6 which tells us that

we should find critical points by means of the partial derivatives. Let us start by differentiating

with respect to β0:

∂

∂β0
ln L = 0 − 1

2σ2

n∑

i=1

2(yi − β0 − β1xi)(−1), (11.2.6)

and the partial derivative equals zero when
∑n

i=1(yi − β0 − β1xi) = 0, that is, when

nβ0 + β1

n∑

i=1

xi =

n∑

i=1

yi. (11.2.7)

Moving on, we next take the partial derivative of ln L (Equation 11.2.5) with respect to β1 to

get

∂

∂β1
ln L = 0 − 1

2σ2

n∑

i=1

2(yi − β0 − β1xi)(−xi), (11.2.8)

=
1

σ2

n∑

i=1

(
xiyi − β0xi − β1x2i

)
, (11.2.9)

and this equals zero when the last sum equals zero, that is, when

β0

n∑

i=1

xi + β1

n∑

i=1

x2i =

n∑

i=1

xiyi. (11.2.10)
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Solving the system of equations 11.2.7 and 11.2.10

nβ0 + β1

n∑

i=1

xi =

n∑

i=1

yi (11.2.11)

β0

n∑

i=1

xi + β1

n∑

i=1

x2i =

n∑

i=1

xiyi (11.2.12)

for β0 and β1 (in Exercise 11.2) gives

β̂1 =

∑n
i=1 xiyi −

(∑n
i=1 xi

) (∑n
i=1 yi

)/
n

∑n
i=1 x

2
i
−

(∑n
i=1 xi

)2/
n

(11.2.13)

and

β̂0 = y − β̂1x. (11.2.14)

The conclusion? To estimate the mean line

µ(x) = β0 + β1x, (11.2.15)

we use the “line of best fit”

µ̂(x) = β̂0 + β̂1x, (11.2.16)

where β̂0 and β̂1 are given as above. For notation we will usually write b0 = β̂0 and b1 = β̂1 so

that µ̂(x) = b0 + b1x.

Remark 11.6. The formula for b1 in Equation 11.2.13 gets the job done but does not really

make any sense. There are many equivalent formulas for b1 that are more intuitive, or at the

least are easier to remember. One of the author’s favorites is

b1 = r
sy

sx
, (11.2.17)

where r, sy, and sx are the sample correlation coefficient and the sample standard deviations of

the Y and x data, respectively. See Exercise 11.3. Also, notice the similarity between Equation

11.2.17 and Equation 7.6.7.

How to do it with R

Here we go. R will calculate the linear regression line with the lm function. We will store the

result in an object which we will call cars.lm. Here is how it works:

> cars.lm <- lm(dist ~ speed, data = cars)

The first part of the input to the lm function, dist~speed, is a model formula, read as

“dist is described by speed”. The data = cars argument tells R where to look for the

variables quoted in the model formula. The output object cars.lm contains a multitude of

information. Let’s first take a look at the coefficients of the fitted regression line, which are

extracted by the coef function3:

> coef(cars.lm)

3Alternatively, we could just type cars.lm to see the same thing.
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Figure 11.2.1: Scatterplot with added regression line for the cars data

(Intercept) speed

-17.579095 3.932409

The parameter estimates b0 and b1 for the intercept and slope, respectively, are shown above.

The regression line is thus given by µ̂(speed) = -17.58 + 3.93speed.

It is good practice to visually inspect the data with the regression line added to the plot. To

do this we first scatterplot the original data and then follow with a call to the abline function.

The inputs to abline are the coefficients of cars.lm (see Figure 11.2.1):

> plot(dist ~ speed, data = cars, pch = 16)

> abline(coef(cars))

To calculate points on the regression line we may simply plug the desired x value(s) into

µ̂, either by hand, or with the predict function. The inputs to predict are the fitted linear

model object, cars.lm, and the desired x value(s) represented by a data frame. See the example

below.

Example 11.7. Using the regression line for the cars data:

1. What is the meaning of µ(60) = β0 + β1(8)?

This represents the average stopping distance (in feet) for a car going 8mph.

2. Interpret the slope β1.
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The true slope β1 represents the increase in average stopping distance for each mile per

hour faster that the car drives. In this case, we estimate the car to take approximately

3.93 additional feet to stop for each additional mph increase in speed.

3. Interpret the intercept β0.

This would represent the mean stopping distance for a car traveling 0mph (which our

regression line estimates to be -17.58). Of course, this interpretation does not make any

sense for this example, because a car travelling 0mph takes 0 ft to stop (it was not moving

in the first place)! What went wrong? Looking at the data, we notice that the smallest

speed for which we have measured data is 4mph. Therefore, if we predict what would

happen for slower speeds then we would be extrapolating, a dangerous practice which

often gives nonsensical results.

11.2.2 Point Estimates of the Regression Line

We said at the beginning of the chapter that our goal was to estimate µ = IE Y , and the arguments

in Section 11.2.1 showed how to obtain an estimate µ̂ of µ when the regression assumptions

hold. Now we will reap the benefits of our work in more ways than we previously disclosed.

Given a particular value x0, there are two values we would like to estimate:

1. the mean value of Y at x0, and

2. a future value of Y at x0.

The first is a number, µ(x0), and the second is a random variable, Y(x0), but our point estimate

is the same for both: µ̂(x0).

Example 11.8. We may use the regression line to obtain a point estimate of the mean stopping

distance for a car traveling 8mph: µ̂(15) = b0 + 8b1 ≈ -17.58 +(8) (3.93)≈ 13.88. We would

also use 13.88 as a point estimate for the stopping distance of a future car traveling 8mph.

Note that we actually have observed data for a car traveling 8mph; its stopping distance

was 16 ft as listed in the fifth row of the cars data:

> cars[5, ]

speed dist

5 8 16

There is a special name for estimates µ̂(x0) when x0 matches an observed value xi from the

data set. They are called fitted values, they are denoted by Ŷ1, Ŷ2, . . . , Ŷn (ignoring repetition),

and they play an important role in the sections that follow.

In an abuse of notation we will sometimes write Ŷ or Ŷ(x0) to denote a point on the re-

gression line even when x0 does not belong to the original data if the context of the statement

obviates any danger of confusion.

We saw in Example 11.7 that spooky things can happen when we are cavalier about point

estimation. While it is usually acceptable to predict/estimate at values of x0 that fall within the

range of the original x data, it is reckless to use µ̂ for point estimates at locations outside that

range. Such estimates are usually worthless. Do not extrapolate unless there are compelling

external reasons, and even then, temper it with a good deal of caution.
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How to do it with R

The fitted values are automatically computed as a byproduct of the model fitting procedure

and are already stored as a component of the cars.lm object. We may access them with the

fitted function (we only show the first five entries):

> fitted(cars.lm)[1:5]

1 2 3 4 5

-1.849460 -1.849460 9.947766 9.947766 13.880175

Predictions at x values that are not necessarily part of the original data are done with the

predict function. The first argument is the original cars.lm object and the second argument

newdata accepts a dataframe (in the same form that was used to fit cars.lm) that contains the

locations at which we are seeking predictions.

Let us predict the average stopping distances of cars traveling 6mph, 8mph, and 21mph:

> predict(cars.lm, newdata = data.frame(speed = c(6, 8, 21)))

1 2 3

6.015358 13.880175 65.001489

Note that there were no observed cars that traveled 6mph or 21mph. Also note that our

estimate for a car traveling 8mph matches the value we computed by hand in Example 11.8.

11.2.3 Mean Square Error and Standard Error

To find the MLE of σ2 we consider the partial derivative

∂

∂σ2
ln L =

n

2σ2
− 1

2(σ2)2

n∑

i=1

(yi − β0 − β1xi)2, (11.2.18)

and after plugging in β̂0 and β̂1 and setting equal to zero we get

σ̂2 =
1

n

n∑

i=1

(yi − β̂0 − β̂1xi)2 =
1

n

n∑

i=1

[yi − µ̂(xi)]2. (11.2.19)

We write Ŷi = µ̂(xi), and we let Ei = Yi − Ŷi be the i
th residual. We see

nσ̂2 =

n∑

i=1

E2
i = S S E = the sum of squared errors. (11.2.20)

For a point estimate of σ2 we use the mean square error S 2 defined by

S 2 =
S S E

n − 2
, (11.2.21)

and we estimate σ with the standard error S =
√
S 2. 4

4Be careful not to confuse the mean square error S 2 with the sample variance S 2 in Chapter 3. Other notation

the reader may encounter is the lowercase s2 or the bulky MSE.
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How to do it with R

The residuals for the model may be obtained with the residuals function; we only show the

first few entries in the interest of space:

> residuals(cars.lm)[1:5]

1 2 3 4 5

3.849460 11.849460 -5.947766 12.052234 2.119825

In the last section, we calculated the fitted value for x = 8 and found it to be approximately

µ̂(8) ≈13.88. Now, it turns out that there was only one recorded observation at x = 8, and we

have seen this value in the output of head(cars) in Example 11.5; it was dist = 16 ft for a

car with speed = 8mph. Therefore, the residual should be E = Y − Ŷ which is E ≈ 16−13.88.
Now take a look at the last entry of residuals(cars.lm), above. It is not a coincidence.

The estimate S for σ is called the Residual standard error and for the cars data is

shown a few lines up on the summary(cars.lm) output (see How to do it with R in Section

11.2.4). We may read it from there to be S ≈ 15.38, or we can access it directly from the

summary object.

> carsumry <- summary(cars.lm)

> carsumry$sigma

[1] 15.37959

11.2.4 Interval Estimates of the Parameters

We discussed general interval estimation in Chapter 9. There we found that we could use what

we know about the sampling distribution of certain statistics to construct confidence intervals

for the parameter being estimated. We will continue in that vein, and to get started we will

determine the sampling distributions of the parameter estimates, b1 and b0.

To that end, we can see from Equation 11.2.13 (and it is made clear in Chapter 12) that b1 is

just a linear combination of normally distributed random variables, so b1 is normally distributed

too. Further, it can be shown that

b1 ∼ norm
(
mean = β1, sd = σb1

)
(11.2.22)

where

σb1 =
σ√∑n

i=1(xi − x)2
(11.2.23)

is called the standard error of b1 which unfortunately depends on the unknown value of σ. We

do not lose heart, though, because we can estimate σ with the standard error S from the last

section. This gives us an estimate S b1 for σb1 defined by

S b1 =
S

√∑n
i=1(xi − x)2

. (11.2.24)

Now, it turns out that b0, b1, and S are mutually independent (see the footnote in Section

12.2.7). Therefore, the quantity

T =
b1 − β1
S b1

(11.2.25)
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has a t(df = n−2) distribution. Therefore, a 100(1−α)% confidence interval for β1 is given by

b1 ± tα/2(df = n − 1) S b1 (11.2.26)

It is also sometimes of interest to construct a confidence interval for β0 in which case we

will need the sampling distribution of b0. It is shown in Chapter 12 that

b0 ∼ norm
(
mean = β0, sd = σb0

)
, (11.2.27)

where σb0 is given by

σb0 = σ

√
1

n
+

x
2

∑n
i=1(xi − x)2

, (11.2.28)

and which we estimate with the S b0 defined by

S b0 = S

√
1

n
+

x
2

∑n
i=1(xi − x)2

. (11.2.29)

Thus the quantity

T =
b0 − β0
S b0

(11.2.30)

has a t(df = n − 2) distribution and a 100(1 − α)% confidence interval for β0 is given by

b0 ± tα/2(df = n − 1) S b0 (11.2.31)

How to do it with R

Let us take a look at the output from summary(cars.lm):

> summary(cars.lm)

Call:

lm(formula = dist ~ speed, data = cars)

Residuals:

Min 1Q Median 3Q Max

-29.069 -9.525 -2.272 9.215 43.201

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) -17.5791 6.7584 -2.601 0.0123 *

speed 3.9324 0.4155 9.464 1.49e-12 ***

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 15.38 on 48 degrees of freedom

Multiple R-squared: 0.6511, Adjusted R-squared: 0.6438

F-statistic: 89.57 on 1 and 48 DF, p-value: 1.490e-12
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In the Coefficients section we find the parameter estimates and their respective standard

errors in the second and third columns; the other columns are discussed in Section 11.3. If we

wanted, say, a 95% confidence interval for β1 we could use b1 = 3.932 and S b1 = 0.416 together

with a t0.025(df = 23) critical value to calculate b1 ± t0.025(df = 23)S b1 .

Or, we could use the confint function.

> confint(cars.lm)

2.5 % 97.5 %

(Intercept) -31.167850 -3.990340

speed 3.096964 4.767853

With 95% confidence, the random interval [3.097, 4.768] covers the parameter β1.

11.2.5 Interval Estimates of the Regression Line

We have seen how to estimate the coefficients of regression line with both point estimates and

confidence intervals. We even saw how to estimate a value µ̂(x) on the regression line for a

given value of x, such as x = 15.

But how good is our estimate µ̂(15)? How much confidence do we have in this estimate?

Furthermore, suppose we were going to observe another value of Y at x = 15. What could we

say?

Intuitively, it should be easier to get bounds on the mean (average) value of Y at x0 (called a

confidence interval for the mean value of Y at x0) than it is to get bounds on a future observation

of Y (called a prediction interval for Y at x0). As we shall see, the intuition serves us well and

confidence intervals are shorter for the mean value, longer for the individual value.

Our point estimate of µ(x0) is of course Ŷ = Ŷ(x0), so for a confidence interval we will need

to know Ŷ’s sampling distribution. It turns out (see Section ) that Ŷ = µ̂(x0) is distributed

Ŷ ∼ norm

mean = µ(x0), sd = σ
√
1

n
+

(x0 − x)2∑n
i=1(xi − x)2

 . (11.2.32)

Since σ is unknown we estimate it with S (we should expect the appearance of a t(df = n − 2)
distribution in the near future).

A 100(1 − α)% confidence interval (CI) for µ(x0) is given by

Ŷ ± tα/2(df = n − 2) S

√
1

n
+

(x0 − x
2)∑n

i=1(xi − x)2
. (11.2.33)

It is time for prediction intervals, which are slightly different. In order to find confidence

bounds for a new observation of Y (we will denote it Ynew) we use the fact that

Ynew ∼ norm
mean = µ(x0), sd = σ

√
1 +

1

n
+

(x0 − x)2∑n
i=1(xi − x)2

 . (11.2.34)

Of course σ is unknown and we estimate it with S . Thus, a 100(1 − α)% prediction interval

(PI) for a future value of Y at x0 is given by

Ŷ(x0) ± tα/2(df = n − 1) S

√
1 +

1

n
+

(x0 − x)2∑n
i=1(xi − x)2

. (11.2.35)

We notice that the prediction interval in Equation 11.2.35 is wider than the confidence interval

in Equation 11.2.33, as we expected at the beginning of the section.
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How to do it with R

Confidence and prediction intervals are calculated in R with the predict function, which we

encountered in Section 11.2.2. There we neglected to take advantage of its additional interval

argument. The general syntax follows.

Example 11.9. We will find confidence and prediction intervals for the stopping distance of a

car travelling 5, 6, and 21mph (note from the graph that there are no collected data for these

speeds). We have computed cars.lm earlier, and we will use this for input to the predict

function. Also, we need to tell R the values of x0 at which we want the predictions made, and

store the x0 values in a data frame whose variable is labeled with the correct name. This is

important.

> new <- data.frame(speed = c(5, 6, 21))

Next we instruct R to calculate the intervals. Confidence intervals are given by

> predict(cars.lm, newdata = new, interval = "confidence")

fit lwr upr

1 2.082949 -7.644150 11.81005

2 6.015358 -2.973341 15.00406

3 65.001489 58.597384 71.40559

Prediction intervals are given by

> predict(cars.lm, newdata = new, interval = "prediction")

fit lwr upr

1 2.082949 -30.33359 34.49948

2 6.015358 -26.18731 38.21803

3 65.001489 33.42257 96.58040

The type of interval is dictated by the interval argument (which is none by default), and

the default confidence level is 95% (which can be changed with the level argument).

Example 11.10. Using the cars data,

1. Report a point estimate of and a 95% confidence interval for the mean stopping distance

for a car travelling 5mph.

The fitted value for x = 5 is 2.08, so a point estimate would be 2.08 ft. The 95% CI is

given by [-7.64, 11.81], so with 95% confidence the mean stopping distance lies some-

where between -7.64 ft and 11.81 ft.

2. Report a point prediction for and a 95% prediction interval for the stopping distance of a

hypothetical car travelling 21mph.

The fitted value for x = 21 is 65, so a point prediction for the stopping distance is 65 ft.

The 95% PI is given by [33.42, 96.58], so with 95% confidence we may assert that the

hypothetical stopping distance for a car travelling 21mph would lie somewhere between

33.42 ft and 96.58 ft.
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Figure 11.2.2: Scatterplot with confidence/prediction bands for the cars data

Graphing the Confidence and Prediction Bands

We earlier guessed that a bound on the value of a single new observation would be inherently

less certain than a bound for an average (mean) value; therefore, we expect the CIs for the

mean to be tighter than the PIs for a new observation. A close look at the standard deviations in

Equations 11.2.33 and 11.2.35 confirms our guess, but we would like to see a picture to drive

the point home.

We may plot the confidence and prediction intervals with one fell swoop using the ci.plot

function from the HH package [40]. The graph is displayed in Figure 11.2.2.

> library(HH)

> ci.plot(cars.lm)

Notice that the bands curve outward away from the regression line as the x values move

away from the center. This is expected once we notice the (x0 − x)2 term in the standard

deviation formulas in Equations 11.2.33 and 11.2.35.

11.3 Model Utility and Inference

11.3.1 Hypothesis Tests for the Parameters

Much of the attention of SLR is directed toward β1 because when β1 , 0 the mean value of Y

increases (or decreases) as x increases. Further, if β1 = 0 then the mean value of Y remains the



11.3. MODEL UTILITY AND INFERENCE 249

same, regardless of the value of x (when the regression assumptions hold, of course). It is thus

very important to decide whether or not β1 = 0. We address the question with a statistical test

of the null hypothesis H0 : β1 = 0 versus the alternative hypothesis H1 : β1 , 0, and to do that

we need to know the sampling distribution of b1 when the null hypothesis is true.

To this end we already know from Section 11.2.4 that the quantity

T =
b1 − β1
S b1

(11.3.1)

has a t(df = n − 2) distribution; therefore, when β1 = 0 the quantity b1/S b1 has a t(df = n − 2)
distribution and we can compute a p-value by comparing the observed value of b1/S b1 with

values under a t(df = n − 2) curve.
Similarly, we may test the hypothesis H0 : β0 = 0 versus the alternative H1 : β0 , 0 with

the statistic T = b0/S b0 , where S b0 is given in Section 11.2.4. The test is conducted the same

way as for β1.

How to do it with R

Let us take another look at the output from summary(cars.lm):

> summary(cars.lm)

Call:

lm(formula = dist ~ speed, data = cars)

Residuals:

Min 1Q Median 3Q Max

-29.069 -9.525 -2.272 9.215 43.201

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) -17.5791 6.7584 -2.601 0.0123 *

speed 3.9324 0.4155 9.464 1.49e-12 ***

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 15.38 on 48 degrees of freedom

Multiple R-squared: 0.6511, Adjusted R-squared: 0.6438

F-statistic: 89.57 on 1 and 48 DF, p-value: 1.490e-12

In the Coefficients section we find the t statistics and the p-values associated with the

tests that the respective parameters are zero in the fourth and fifth columns. Since the p-values

are (much) less than 0.05, we conclude that there is strong evidence that the parameters β1 , 0

and β0 , 0, and as such, we say that there is a statistically significant linear relationship between

dist and speed.

11.3.2 Simple Coefficient of Determination

It would be nice to have a single number that indicates how well our linear regression model is

doing, and the simple coefficient of determination is designed for that purpose. In what follows,
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we observe the values Y1, Y2, . . . ,Yn, and the goal is to estimate µ(x0), the mean value of Y at

the location x0.

If we disregard the dependence of Y and x and base our estimate only on the Y values then

a reasonable choice for an estimator is just the MLE of µ, which is Y . Then the errors incurred

by the estimate are just Yi − Y and the variation about the estimate as measured by the sample

variance is proportional to

S S TO =

n∑

i=1

(Yi − Y)2. (11.3.2)

Here, S S TO is an acronym for the total sum of squares.

But we do have additional information, namely, we have values xi associated with each

value of Yi. We have seen that this information leads us to the estimate Ŷi and the errors

incurred are just the residuals, Ei = Yi − Ŷi. The variation associated with these errors can be

measured with

S S E =

n∑

i=1

(Yi − Ŷi)
2. (11.3.3)

We have seen the S S E before, which stands for the sum of squared errors or error sum of

squares. Of course, we would expect the error to be less in the latter case, since we have used

more information. The improvement in our estimation as a result of the linear regression model

can be measured with the difference

(Yi − Y) − (Yi − Ŷi) = Ŷi − Y ,

and we measure the variation in these errors with

S SR =

n∑

i=1

(Ŷi − Y)2, (11.3.4)

also known as the regression sum of squares. It is not obvious, but some algebra proved a

famous result known as the ANOVA Equality:

n∑

i=1

(Yi − Y)2 =
n∑

i=1

(Ŷi − Y)2 +
n∑

i=1

(Yi − Ŷi)
2 (11.3.5)

or in other words,

S S TO = S SR + S S E. (11.3.6)

This equality has a nice interpretation. Consider S S TO to be the total variation of the errors.

Think of a decomposition of the total variation into pieces: one piece measuring the reduction

of error from using the linear regression model, or explained variation (S SR), while the other

represents what is left over, that is, the errors that the linear regression model doesn’t explain,

or unexplained variation (S S E). In this way we see that the ANOVA equality merely partitions

the variation into

total variation = explained variation + unexplained variation.

For a single number to summarize how well our model is doing we use the simple coefficient

of determination r2, defined by

r2 = 1 − S S E

S S TO
. (11.3.7)
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We interpret r2 as the proportion of total variation that is explained by the simple linear regres-

sion model. When r2 is large, the model is doing a good job; when r2 is small, the model is not

doing a good job.

Related to the simple coefficient of determination is the sample correlation coefficient, r.

As you can guess, the way we get r is by the formula |r| =
√
r2. But how do we get the sign? It

is equal the sign of the slope estimate b1. That is, if the regression line µ̂(x) has positive slope,

then r =
√
r2. Likewise, if the slope of µ̂(x) is negative, then r = −

√
r2.

How to do it with R

The primary method to display partitioned sums of squared errors is with an ANOVA table. The

command in R to produce such a table is anova. The input to anova is the result of an lm call

which for the cars data is cars.lm.

> anova(cars.lm)

Analysis of Variance Table

Response: dist

Df Sum Sq Mean Sq F value Pr(>F)

speed 1 21186 21185.5 89.567 1.490e-12 ***

Residuals 48 11354 236.5

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

The output gives

r2 = 1 − S S E

S SR + S S E
= 1 − 11353.5

21185.5 + 11353.5
≈ 0.65.

The interpretation should be: “The linear regression line accounts for approximately 65% of

the variation of dist as explained by speed”.

The value of r2 is stored in the r.squared component of summary(cars.lm), which we

called carsumry.

> carsumry$r.squared

[1] 0.6510794

We already knew this. We saw it in the next to the last line of the summary(cars.lm)

output where it was called “Multiple R-squared”. Listed right beside it is the Adjusted

R-squared which we will discuss in Chapter 12.

For the cars data, we find r to be

> sqrt(carsumry$r.squared)

[1] 0.8068949

We choose the principal square root because the slope of the regression line is positive.
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11.3.3 Overall F statistic

There is another way to test the significance of the linear regression model. In SLR, the new

way also tests the hypothesis H0 : β1 = 0 versus H1 : β1 , 0, but it is done with a new test

statistic called the overall F statistic. It is defined by

F =
S SR

S S E/(n − 2) . (11.3.8)

Under the regression assumptions and when H0 is true, the F statistic has an f(df1 = 1, df2 =

n− 2) distribution. We reject H0 when F is large – that is, when the explained variation is large

relative to the unexplained variation.

All this being said, we have not yet gained much from the overall F statistic because we

already knew from Section 11.3.1 how to test H0 : β1 = 0. . . we use the Student’s t statistic.

What is worse is that (in the simple linear regression model) it can be proved that the F in

Equation 11.3.8 is exactly the Student’s t statistic for β1 squared,

F =

(
b1

S b1

)2
. (11.3.9)

So why bother to define the F statistic? Why not just square the t statistic and be done with

it? The answer is that the F statistic has a more complicated interpretation and plays a more

important role in the multiple linear regression model which we will study in Chapter 12. See

Section 12.3.3 for details.

11.3.4 How to do it with R

The overall F statistic and p-value are displayed in the bottom line of the summary(cars.lm)

output. It is also shown in the final columns of anova(cars.lm):

> anova(cars.lm)

Analysis of Variance Table

Response: dist

Df Sum Sq Mean Sq F value Pr(>F)

speed 1 21186 21185.5 89.567 1.490e-12 ***

Residuals 48 11354 236.5

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Here we see that the F statistic is 89.57 with a p-value very close to zero. The conclusion:

there is very strong evidence that H0 : β1 = 0 is false, that is, there is strong evidence that

β1 , 0. Moreover, we conclude that the regression relationship between dist and speed is

significant.

Note that the value of the F statistic is the same as the Student’s t statistic for speed squared.

11.4 Residual Analysis

We know from our model that Y = µ(x) + ǫ, or in other words, ǫ = Y − µ(x). Further, we

know that ǫ ∼ norm(mean = 0, sd = σ). We may estimate ǫi with the residual Ei = Yi − Ŷi,
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Figure 11.4.1: Normal q-q plot of the residuals for the cars data

Used for checking the normality assumption. Look out for any curvature or substantial departures from

the straight line; hopefully the dots hug the line closely.

where Ŷi = µ̂(xi). If the regression assumptions hold, then the residuals should be normally

distributed. We check this in Section 11.4.1. Further, the residuals should have mean zero

with constant variance σ2, and we check this in Section 11.4.2. Last, the residuals should be

independent, and we check this in Section 11.4.3.

In every case, we will begin by looking at residual plots – that is, scatterplots of the residuals

Ei versus index or predicted values Ŷi – and follow up with hypothesis tests.

11.4.1 Normality Assumption

We can assess the normality of the residuals with graphical methods and hypothesis tests. To

check graphically whether the residuals are normally distributed we may look at histograms or

q-q plots. We first examine a histogram in Figure 11.4.1. There we see that the distribution of

the residuals appears to be mound shaped, for the most part. We can plot the order statistics of

the sample versus quantiles from a norm(mean = 0, sd = 1) distribution with the command

plot(cars.lm, which = 2), and the results are in Figure 11.4.1. If the assumption of nor-

mality were true, then we would expect points randomly scattered about the dotted straight line

displayed in the figure. In this case, we see a slight departure from normality in that the dots

show systematic clustering on one side or the other of the line. The points on the upper end of

the plot also appear begin to stray from the line. We would say there is some evidence that the

residuals are not perfectly normal.
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Testing the Normality Assumption

Even though we may be concerned about the plots, we can use tests to determine if the evidence

present is statistically significant, or if it could have happened merely by chance. There are

many statistical tests of normality. We will use the Shapiro-Wilk test, since it is known to be

a good test and to be quite powerful. However, there are many other fine tests of normality

including the Anderson-Darling test and the Lillefors test, just to mention two of them.

The Shapiro-Wilk test is based on the statistic

W =

(∑n
i=1 aiE(i)

)2
∑n

j=1 E
2
j

, (11.4.1)

where the E(i) are the ordered residuals and the ai are constants derived from the order statistics

of a sample of size n from a normal distribution. See Section 10.5.3.

We perform the Shapiro-Wilk test below, using the shapiro.test function from the stats

package. The hypotheses are

H0 : the residuals are normally distributed

versus

H1 : the residuals are not normally distributed.

The results from R are

> shapiro.test(residuals(cars.lm))

Shapiro-Wilk normality test

data: residuals(cars.lm)

W = 0.9451, p-value = 0.02153

For these data we would reject the assumption of normality of the residuals at the α = 0.05

significance level, but do not lose heart, because the regression model is reasonably robust to

departures from the normality assumption. As long as the residual distribution is not highly

skewed, then the regression estimators will perform reasonably well. Moreover, departures

from constant variance and independence will sometimes affect the quantile plots and his-

tograms, therefore it is wise to delay final decisions regarding normality until all diagnostic

measures have been investigated.

11.4.2 Constant Variance Assumption

We will again go to residual plots to try and determine if the spread of the residuals is changing

over time (or index). However, it is unfortunately not that easy because the residuals do not

have constant variance! In fact, it can be shown that the variance of the residual Ei is

Var(Ei) = σ
2(1 − hii), i = 1, 2, . . . , n, (11.4.2)

where hii is a quantity called the leverage which is defined below. Consequently, in order to

check the constant variance assumption we must standardize the residuals before plotting. We

estimate the standard error of Ei with sEi
= s
√
(1 − hii) and define the standardized residuals

Ri, i = 1, 2, . . . , n, by

Ri =
Ei

s
√
1 − hii

, i = 1, 2, . . . , n. (11.4.3)
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Figure 11.4.2: Plot of standardized residuals against the fitted values for the cars data

Used for checking the constant variance assumption. Watch out for any fanning out (or in) of the dots;

hopefully they fall in a constant band.

For the constant variance assumption we do not need the sign of the residual so we will plot√
|Ri| versus the fitted values. As we look at a scatterplot of

√
|Ri| versus Ŷi we would expect

under the regression assumptions to see a constant band of observations, indicating no change

in the magnitude of the observed distance from the line. We want to watch out for a fanning-out

of the residuals, or a less common funneling-in of the residuals. Both patterns indicate a change

in the residual variance and a consequent departure from the regression assumptions, the first

an increase, the second a decrease.

In this case, we plot the standardized residuals versus the fitted values. The graph may be

seen in Figure 11.4.2. For these data there does appear to be somewhat of a slight fanning-out

of the residuals.

Testing the Constant Variance Assumption

We will use the Breusch-Pagan test to decide whether the variance of the residuals is noncon-

stant. The null hypothesis is that the variance is the same for all observations, and the alternative

hypothesis is that the variance is not the same for all observations. The test statistic is found by

fitting a linear model to the centered squared residuals

Wi = E2
i −

S S E

n
, i = 1, 2, . . . , n. (11.4.4)
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By default the same explanatory variables are used in the new model which produces fitted

values Ŵi, i = 1, 2, . . . , n. The Breusch-Pagan test statistic in R is then calculated with

BP = n

n∑

i=1

Ŵ2
i ÷

n∑

i=1

W2
i . (11.4.5)

We reject the null hypothesis if BP is too large, which happens when the explained variation in

the new model is large relative to the unexplained variation in the original model.

We do it in R with the bptest function from the lmtest package [93].

> library(lmtest)

> bptest(cars.lm)

studentized Breusch-Pagan test

data: cars.lm

BP = 3.2149, df = 1, p-value = 0.07297

For these data we would not reject the null hypothesis at the α = 0.05 level. There is

relatively weak evidence against the assumption of constant variance.

11.4.3 Independence Assumption

One of the strongest of the regression assumptions is the one regarding independence. Depar-

tures from the independence assumption are often exhibited by correlation (or autocorrelation,

literally, self-correlation) present in the residuals. There can be positive or negative correlation.

Positive correlation is displayed by positive residuals followed by positive residuals, and

negative residuals followed by negative residuals. Looking from left to right, this is exhibited by

a cyclical feature in the residual plots, with long sequences of positive residuals being followed

by long sequences of negative ones.

On the other hand, negative correlation implies positive residuals followed by negative

residuals, which are then followed by positive residuals, etc. Consequently, negatively corre-

lated residuals are often associated with an alternating pattern in the residual plots. We examine

the residual plot in Figure 11.4.3. There is no obvious cyclical wave pattern or structure to the

residual plot.

Testing the Independence Assumption

We may statistically test whether there is evidence of autocorrelation in the residuals with the

Durbin-Watson test. The test is based on the statistic

D =

∑n
i=2(Ei − Ei−1)

2

∑n
j=1 E

2
j

. (11.4.6)

Exact critical values are difficult to obtain, but R will calculate the p-value to great accuracy.

It is performed with the dwtest function from the lmtest package. We will conduct a two

sided test that the correlation is not zero, which is not the default (the default is to test that the

autocorrelation is positive).

> library(lmtest)

> dwtest(cars.lm, alternative = "two.sided")
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Figure 11.4.3: Plot of the residuals versus the fitted values for the cars data

Used for checking the independence assumption. Watch out for any patterns or structure; hopefully the

points are randomly scattered on the plot.
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Durbin-Watson test

data: cars.lm

DW = 1.6762, p-value = 0.1904

alternative hypothesis: true autocorelation is not 0

In this case we do not reject the null hypothesis at the α = 0.05 significance level; there is

very little evidence of nonzero autocorrelation in the residuals.

11.4.4 Remedial Measures

We often find problems with our model that suggest that at least one of the three regression

assumptions is violated. What do we do then? There are many measures at the statistician’s

disposal, and we mention specific steps one can take to improve the model under certain types

of violation.

Mean response is not linear. We can directly modify the model to better approximate the

mean response. In particular, perhaps a polynomial regression function of the form

µ(x) = β0 + β1x1 + β2x
2
1

would be appropriate. Alternatively, we could have a function of the form

µ(x) = β0e
β1x.

Models like these are studied in nonlinear regression courses.

Error variance is not constant. Sometimes a transformation of the dependent variable will

take care of the problem. There is a large class of them called Box-Cox transformations.

They take the form

Y∗ = Yλ, (11.4.7)

where λ is a constant. (The method proposed by Box and Cox will determine a suitable

value of λ automatically by maximum likelihood). The class contains the transformations

λ = 2, Y∗ = Y2

λ = 0.5, Y∗ =
√
Y

λ = 0, Y∗ = ln Y

λ = −1, Y∗ = 1/Y

Alternatively, we can use the method of weighted least squares. This is studied in more

detail in later classes.

Error distribution is not normal. The same transformations for stabilizing the variance are

equally appropriate for smoothing the residuals to a more Gaussian form. In fact, often

we will kill two birds with one stone.

Errors are not independent. There is a large class of autoregressive models to be used in this

situation which occupy the latter part of Chapter 16.
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11.5 Other Diagnostic Tools

There are two types of observations with which we must be especially careful:

Influential observations are those that have a substantial effect on our estimates, predictions,

or inferences. A small change in an influential observation is followed by a large change

in the parameter estimates or inferences.

Outlying observations are those that fall fall far from the rest of the data. They may be indicat-

ing a lack of fit for our regression model, or they may just be a mistake or typographical

error that should be corrected. Regardless, special attention should be given to these

observations. An outlying observation may or may not be influential.

We will discuss outliers first because the notation builds sequentially in that order.

11.5.1 Outliers

There are three ways that an observation (xi, yi) may be an outlier: it can have an xi value which

falls far from the other x values, it can have a yi value which falls far from the other y values,

or it can have both its xi and yi values falling far from the other x and y values.

Leverage

Leverage statistics are designed to identify observations which have x values that are far away

from the rest of the data. In the simple linear regression model the leverage of xi is denoted by

hii and defined by

hii =
1

n
+

(xi − x)2∑n
k=1(xk − x)2

, i = 1, 2, . . . , n. (11.5.1)

The formula has a nice interpretation in the SLR model: if the distance from xi to x is large

relative to the other x’s then hii will be close to 1.

Leverages have nice mathematical properties; for example, they satisfy

0 ≤ hii ≤ 1, (11.5.2)

and their sum is

n∑

i=1

hii =

n∑

i=1

[
1

n
+

(xi − x)2∑n
k=1(xk − x)2

]
, (11.5.3)

=
n

n
+

∑
i(xi − x)2∑
k(xk − x)2

, (11.5.4)

= 2. (11.5.5)

A rule of thumb is to consider leverage values to be large if they are more than double their

average size (which is 2/n according to Equation 11.5.5). So leverages larger than 4/n are

suspect. Another rule of thumb is to say that values bigger than 0.5 indicate high leverage,

while values between 0.3 and 0.5 indicate moderate leverage.
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Standardized and Studentized Deleted Residuals

We have already encountered the standardized residuals ri in Section 11.4.2; they are merely

residuals that have been divided by their respective standard deviations:

Ri =
Ei

S
√
1 − hii

, i = 1, 2, . . . , n. (11.5.6)

Values of |Ri| > 2 are extreme and suggest that the observation has an outlying y-value.

Now delete the ith case and fit the regression function to the remaining n−1 cases, producing
a fitted value Ŷ(i) with deleted residual Di = Yi − Ŷ(i). It is shown in later classes that

Var(Di) =
S 2
(i)

1 − hii
, i = 1, 2, . . . , n, (11.5.7)

so that the studentized deleted residuals ti defined by

ti =
Di

S (i)/(1 − hii)
, i = 1, 2, . . . , n, (11.5.8)

have a t(df = n − 3) distribution and we compare observed values of ti to this distribution to

decide whether or not an observation is extreme.

The folklore in regression classes is that a test based on the statistic in Equation 11.5.8 can

be too liberal. A rule of thumb is if we suspect an observation to be an outlier before seeing

the data then we say it is significantly outlying if its two-tailed p-value is less than α, but if

we suspect an observation to be an outlier after seeing the data then we should only say it is

significantly outlying if its two-tailed p-value is less than α/n. The latter rule of thumb is called

the Bonferroni approach and can be overly conservative for large data sets. The responsible

statistician should look at the data and use his/her best judgement, in every case.

11.5.2 How to do it with R

We can calculate the standardized residuals with the rstandard function. The input is the lm

object, which is cars.lm.

> sres <- rstandard(cars.lm)

> sres[1:5]

1 2 3 4 5

0.2660415 0.8189327 -0.4013462 0.8132663 0.1421624

We can find out which observations have studentized residuals larger than two with the

command

> sres[which(abs(sres) > 2)]

23 35 49

2.795166 2.027818 2.919060

In this case, we see that observations 23, 35, and 49 are potential outliers with respect to

their y-value.

We can compute the studentized deleted residuals with rstudent:
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> sdelres <- rstudent(cars.lm)

> sdelres[1:5]

1 2 3 4 5

0.2634500 0.8160784 -0.3978115 0.8103526 0.1407033

We should compare these values with critical values from a t(df = n−3) distribution, which
in this case is t(df = 50 − 3 = 47). We can calculate a 0.005 quantile and check with

> t0.005 <- qt(0.005, df = 47, lower.tail = FALSE)

> sdelres[which(abs(sdelres) > t0.005)]

23 49

3.022829 3.184993

This means that observations 23 and 49 have a large studentized deleted residual. The

leverages can be found with the hatvalues function:

> leverage <- hatvalues(cars.lm)

> leverage[1:5]

1 2 3 4 5

0.11486131 0.11486131 0.07150365 0.07150365 0.05997080

> leverage[which(leverage > 4/50)]

1 2 50

0.11486131 0.11486131 0.08727007

Here we see that observations 1, 2, and 50 have leverages bigger than double their mean

value. These observations would be considered outlying with respect to their x value (although

they may or may not be influential).

11.5.3 Influential Observations

DFBETAS and DFFITS

Anytime we do a statistical analysis, we are confronted with the variability of data. It is always

a concern when an observation plays too large a role in our regression model, and we would

not like or procedures to be overly influenced by the value of a single observation. Hence,

it becomes desirable to check to see how much our estimates and predictions would change

if one of the observations were not included in the analysis. If an observation changes the

estimates/predictions a large amount, then the observation is influential and should be subjected

to a higher level of scrutiny.

We measure the change in the parameter estimates as a result of deleting an observation

with DFBETAS . The DFBETAS for the intercept b0 are given by

(DFBETAS )0(i) =
b0 − b0(i)

S (i)

√
1
n
+ x2∑n

i=1(xi−x)2

, i = 1, 2, . . . , n. (11.5.9)

and the DFBETAS for the slope b1 are given by

(DFBETAS )1(i) =
b1 − b1(i)

S (i)

[∑n
i=1(xi − x)2

]−1/2 , i = 1, 2, . . . , n. (11.5.10)
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See Section 12.8 for a better way to write these. The signs of the DFBETAS indicate whether

the coefficients would increase or decrease as a result of including the observation. If the

DFBETAS are large, then the observation has a large impact on those regression coefficients.

We label observations as suspicious if their DFBETAS have magnitude greater 1 for small data

or 2/
√
n for large data sets.

We can calculate the DFBETAS with the dfbetas function (some output has been omit-

ted):

> dfb <- dfbetas(cars.lm)

> head(dfb)

(Intercept) speed

1 0.09440188 -0.08624563

2 0.29242487 -0.26715961

3 -0.10749794 0.09369281

4 0.21897614 -0.19085472

5 0.03407516 -0.02901384

6 -0.11100703 0.09174024

We see that the inclusion of the first observation slightly increases the Intercept and

slightly decreases the coefficient on speed.

We can measure the influence that an observation has on its fitted value with DFFITS .

These are calculated by deleting an observation, refitting the model, recalculating the fit, then

standardizing. The formula is

(DFFITS )i =
Ŷi − Ŷ(i)

S (i)

√
hii
, i = 1, 2, . . . , n. (11.5.11)

The value represents the number of standard deviations of Ŷi that the fitted value Ŷi increases

or decreases with the inclusion of the ith observation. We can compute them with the dffits

function.

> dff <- dffits(cars.lm)

> dff[1:5]

1 2 3 4 5

0.09490289 0.29397684 -0.11039550 0.22487854 0.03553887

A rule of thumb is to flag observations whose DFFIT exceeds one in absolute value, but

there are none of those in this data set.

Cook’s Distance

The DFFITS are good for measuring the influence on a single fitted value, but we may want

to measure the influence an observation has on all of the fitted values simultaneously. The

statistics used for measuring this are Cook’s distances which may be calculated5 by the formula

Di =
E2
i

(p + 1)S 2
· hii

(1 − hii)2
, i = 1, 2, . . . , n. (11.5.12)

5Cook’s distances are actually defined by a different formula than the one shown. The formula in Equation

11.5.12 is algebraically equivalent to the defining formula and is, in the author’s opinion, more transparent.
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Figure 11.5.1: Cook’s distances for the cars data

Used for checking for influential and/our outlying observations. Values with large Cook’s distance merit

further investigation.

It shows that Cook’s distance depends both on the residual Ei and the leverage hii and in this

way Di contains information about outlying x and y values.

To assess the significance of D, we compare to quantiles of an f(df1 = 2, df2 = n − 2)

distribution. A rule of thumb is to classify observations falling higher than the 50th percentile

as being extreme.

11.5.4 How to do it with R

We can calculate the Cook’s Distances with the cooks.distance function.

> cooksD <- cooks.distance(cars.lm)

> cooksD[1:5]

1 2 3 4 5

0.0045923121 0.0435139907 0.0062023503 0.0254673384 0.0006446705

We can look at a plot of the Cook’s distances with the command plot(cars.lm, which

= 4).

Observations with the largest Cook’s D values are labeled, hence we see that observations

23, 39, and 49 are suspicious. However, we need to compare to the quantiles of an f(df1 =

2, df2 = 48) distribution:
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> F0.50 <- qf(0.5, df1 = 2, df2 = 48)

> cooksD[which(cooksD > F0.50)]

named numeric(0)

We see that with this data set there are no observations with extreme Cook’s distance, after

all.

11.5.5 All Influence Measures Simultaneously

We can display the result of diagnostic checking all at once in one table, with potentially influ-

ential points displayed. We do it with the command influence.measures(cars.lm):

> influence.measures(cars.lm)

The output is a hugematrix display, which we have omitted in the interest of brevity. A point

is identified if it is classified to be influential with respect to any of the diagnostic measures.

Here we see that observations 2, 11, 15, and 18 merit further investigation.

We can also look at all diagnostic plots at once with the commands

> par(mfrow = c(2, 2))

> plot(cars.lm)

> par(mfrow = c(1, 1))

The par command is used so that 2 × 2 = 4 plots will be shown on the same display. The

diagnostic plots for the cars data are shown in Figure 11.5.2:

We have discussed all of the plots except the last, which is possibly the most interesting. It

shows Residuals vs. Leverage, which will identify outlying y values versus outlying x values.

Here we see that observation 23 has a high residual, but low leverage, and it turns out that

observations 1 and 2 have relatively high leverage but low/moderate leverage (they are on the

right side of the plot, just above the horizontal line). Observation 49 has a large residual with a

comparatively large leverage.

We can identify the observations with the identify command; it allows us to display the

observation number of dots on the plot. First, we plot the graph, then we call identify:

> plot(cars.lm, which = 5) # std'd resids vs lev plot

> identify(leverage, sres, n = 4) # identify 4 points

The graph with the identified points is omitted (but the plain plot is shown in the bottom

right corner of Figure 11.5.2). Observations 1 and 2 fall on the far right side of the plot, near

the horizontal axis.
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Figure 11.5.2: Diagnostic plots for the cars data
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Chapter Exercises

Exercise 11.1. Prove the ANOVA equality, Equation 11.3.5. Hint: show that

n∑

i=1

(Yi − Ŷi)(Ŷi − Y) = 0.

Exercise 11.2. Solve the following system of equations for β1 and β0 to find the MLEs for

slope and intercept in the simple linear regression model.

nβ0 + β1

n∑

i=1

xi =

n∑

i=1

yi

β0

n∑

i=1

xi + β1

n∑

i=1

x2i =

n∑

i=1

xiyi

Exercise 11.3. Show that the formula given in Equation 11.2.17 is equivalent to

β̂1 =

∑n
i=1 xiyi −

(∑n
i=1 xi

) (∑n
i=1 yi

)/
n

∑n
i=1 x

2
i
− (∑n

i=1 xi
)2/

n
.



Chapter 12

Multiple Linear Regression

We know a lot about simple linear regression models, and a next step is to study multiple re-

gression models that have more than one independent (explanatory) variable. In the discussion

that follows we will assume that we have p explanatory variables, where p > 1.

The language is phrased in matrix terms – for two reasons. First, it is quicker to write and

(arguably) more pleasant to read. Second, the matrix approach will be required for later study

of the subject; the reader might as well be introduced to it now.

Most of the results are stated without proof or with only a cursory justification. Those

yearning for more should consult an advanced text in linear regression for details, such as

Applied Linear Regression Models [67]or Linear Models: Least Squares and Alternatives [69].

What do I want them to know?

• the basic MLR model, and how it relates to the SLR

• how to estimate the parameters and use those estimates to make predictions

• basic strategies to determine whether or not the model is doing a good job

• a few thoughts about selected applications of the MLR, such as polynomial, interaction,

and dummy variable models

• some of the uses of residuals to diagnose problems

• hints about what will be coming later

12.1 The Multiple Linear Regression Model

The first thing to do is get some better notation. We will write

Yn×1 =



y1
y2
...

yn


, and Xn×(p+1) =



1 x11 x21 · · · xp1
1 x12 x22 · · · xp2
...
...

...
. . .

...

1 x1n x2n · · · xpn


. (12.1.1)

The vector Y is called the response vector and the matrix X is called the model matrix. As in

Chapter 11, the most general assumption that relates Y to X is

Y = µ(X) + ǫ, (12.1.2)

267
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where µ is some function (the signal) and ǫ is the noise (everything else). We usually impose

some structure on µ and ǫ. In particular, the standard multiple linear regression model assumes

Y = Xβ + ǫ, (12.1.3)

where the parameter vector β looks like

β(p+1)×1 =
[
β0 β1 · · · βp

]T
, (12.1.4)

and the random vector ǫn×1 =
[
ǫ1 ǫ2 · · · ǫn

]T
is assumed to be distributed

ǫ ∼ mvnorm
(
mean = 0n×1, sigma = σ

2In×n
)
. (12.1.5)

The assumption on ǫ is equivalent to the assumption that ǫ1, ǫ2, . . . , ǫn are i.i.d. norm(mean =

0, sd = σ). It is a linear model because the quantity µ(X) = Xβ is linear in the parameters β0,

β1,. . . , βp. It may be helpful to see the model in expanded form; the above matrix formulation

is equivalent to the more lengthy

Yi = β0 + β1x1i + β2x2i + · · · + βpxpi + ǫi, i = 1, 2, . . . , n. (12.1.6)

Example 12.1. Girth, Height, and Volume for Black Cherry trees.Measurements were made

of the girth, height, and volume of timber in 31 felled black cherry trees. Note that girth is the

diameter of the tree (in inches) measured at 4 ft 6 in above the ground. The variables are

1. Girth: tree diameter in inches (denoted x1)

2. Height: tree height in feet (x2).

3. Volume: volume of the tree in cubic feet. (y)

The data are in the datasets package and are already on the search path; they can be viewed

with

> head(trees)

Girth Height Volume

1 8.3 70 10.3

2 8.6 65 10.3

3 8.8 63 10.2

4 10.5 72 16.4

5 10.7 81 18.8

6 10.8 83 19.7

Let us take a look at a visual display of the data. For multiple variables, instead of a simple

scatterplot we use a scatterplot matrix which is made with the splom function in the lattice

package [75] as shown below. The plot is shown in Figure 12.1.1.

> library(lattice)

> splom(trees)

The dependent (response) variable Volume is listed in the first row of the scatterplot matrix.

Moving from left to right, we see an approximately linear relationship between Volume and the

independent (explanatory) variables Height and Girth. A first guess at a model for these data

might be

Y = β0 + β1x1 + β2x2 + ǫ, (12.1.7)

in which case the quantity µ(x1, x2) = β0 + β1x1 + β2x2 would represent the mean value of Y at

the point (x1, x2).
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Scatter Plot Matrix

Girth15

20
15 20

10

15

10 15

Height75

80

85 75 80 85

65

70

75

65 70 75

Volume

60

80

60 80

20

40

20 40

Figure 12.1.1: Scatterplot matrix of trees data

What does it mean?

The interpretation is simple. The intercept β0 represents the mean Volume when all other inde-

pendent variables are zero. The parameter βi represents the change in mean Volume when there

is a unit increase in xi, while the other independent variable is held constant. For the trees

data, β1 represents the change in average Volume as Girth increases by one unit when the

Height is held constant, and β2 represents the change in average Volume as Height increases

by one unit when the Girth is held constant.

In simple linear regression, we had one independent variable and our linear regression sur-

face was 1D, simply a line. In multiple regression there are many independent variables and so

our linear regression surface will be many-D. . . in general, a hyperplane. But when there are

only two explanatory variables the hyperplane is just an ordinary plane and we can look at it

with a 3D scatterplot.

One way to do this is with the R Commander in the Rcmdr package [31]. It has a 3D

scatterplot option under the Graphs menu. It is especially great because the resulting graph is

dynamic; it can be moved around with the mouse, zoomed, etc. But that particular display does

not translate well to a printed book.

Another way to do it is with the scatterplot3d function in the scatterplot3d package.

The code follows, and the result is shown in Figure 12.1.2.

> library(scatterplot3d)

> s3d <- with(trees, scatterplot3d(Girth, Height, Volume, pch = 16,

+ highlight.3d = TRUE, angle = 60))

> fit <- lm(Volume ~ Girth + Height, data = trees)

> s3d$plane3d(fit)
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Figure 12.1.2: 3D scatterplot with regression plane for the trees data

Looking at the graph we see that the data points fall close to a plane in three dimensional

space. (The plot looks remarkably good. In the author’s experience it is rare to see points fit so

well to the plane without some additional work.)

12.2 Estimation and Prediction

12.2.1 Parameter estimates

We will proceed exactly like we did in Section 11.2. We know

ǫ ∼ mvnorm
(
mean = 0n×1, sigma = σ

2In×n
)
, (12.2.1)

which means that Y = Xβ + ǫ has an mvnorm
(
mean = Xβ, sigma = σ2In×n

)
distribution.

Therefore, the likelihood function is

L(β, σ) =
1

2πn/2σ
exp

{
− 1

2σ2
(Y − Xβ)T (Y − Xβ)

}
. (12.2.2)

Tomaximize the likelihood inβ, we need tominimize the quantity g(β) = (Y − Xβ)T (Y − Xβ).
We do this by differentiating g with respect to β. (It may be a good idea to brush up on the

material in Appendices E.5 and E.6.) First we will rewrite g:

g(β) = YTY − YTXβ − βTXTY + βTXTXβ, (12.2.3)

which can be further simplified to g(β) = YTY − 2βTXTY + βTXTXβ since βTXTY is 1 × 1

and thus equal to its transpose. Now we differentiate to get

∂g

∂β
= 0 − 2XTY + 2XTXβ, (12.2.4)
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since XTX is symmetric. Setting the derivative equal to the zero vector yields the so called

“normal equations”

XTXβ = XTY. (12.2.5)

In the case that XTX is invertible1, we may solve the equation for β to get the maximum

likelihood estimator of β which we denote by b:

b =
(
XTX

)−1
XTY. (12.2.6)

Remark 12.2. The formula in Equation 12.2.6 is convenient for mathematical study but is incon-

venient for numerical computation. Researchers have devised much more efficient algorithms

for the actual calculation of the parameter estimates, and we do not explore them here.

Remark 12.3. We have only found a critical value, and have not actually shown that the critical

value is a minimum. We omit the details and refer the interested reader to [69].

12.2.2 How to do it with R

We do all of the above just as we would in simple linear regression. The powerhouse is the

lm function. Everything else is based on it. We separate explanatory variables in the model

formula by a plus sign.

> trees.lm <- lm(Volume ~ Girth + Height, data = trees)

> trees.lm

Call:

lm(formula = Volume ~ Girth + Height, data = trees)

Coefficients:

(Intercept) Girth Height

-57.9877 4.7082 0.3393

We see from the output that for the trees data our parameter estimates are b =
[
−58.0 4.7 0.3

]
,

and consequently our estimate of the mean response is µ̂ given by

µ̂(x1, x2) = b0 + b1x1 + b2x2, (12.2.7)

≈ − 58.0 + 4.7x1 + 0.3x2. (12.2.8)

We could see the entire model matrix X with the model.matrix function, but in the interest of

brevity we only show the first few rows.

> head(model.matrix(trees.lm))

(Intercept) Girth Height

1 1 8.3 70

2 1 8.6 65

3 1 8.8 63

4 1 10.5 72

5 1 10.7 81

6 1 10.8 83

1We can find solutions of the normal equations even when XTX is not of full rank, but the topic falls outside

the scope of this book. The interested reader can consult an advanced text such as Rao [69].
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12.2.3 Point Estimates of the Regression Surface

The parameter estimates b make it easy to find the fitted values, Ŷ. We write them individually

as Ŷi, i = 1, 2, . . . , n, and recall that they are defined by

Ŷi = µ̂(x1i, x2i), (12.2.9)

= b0 + b1x1i + b2x2i, i = 1, 2, . . . , n. (12.2.10)

They are expressed more compactly by the matrix equation

Ŷ = Xb. (12.2.11)

From Equation 12.2.6 we know that b =
(
XTX

)−1
XTY, so we can rewrite

Ŷ = X

[(
XTX

)−1
XTY

]
, (12.2.12)

= HY, (12.2.13)

whereH = X
(
XTX

)−1
XT is appropriately named the hat matrix because it “puts the hat on Y”.

The hat matrix is very important in later courses. Some facts about H are

• H is a symmetric square matrix, of dimension n × n.

• The diagonal entries hii satisfy 0 ≤ hii ≤ 1 (compare to Equation 11.5.2).

• The trace is tr(H) = p.

• H is idempotent (also known as a projection matrix) which means that H2 = H. The

same is true of I −H.

Now let us write a column vector x0 = (x10, x20)
T to denote given values of the explanatory

variables Girth = x10 and Height = x20. These values may match those of the collected data,

or they may be completely new values not observed in the original data set. We may use the

parameter estimates to find Ŷ(x0), which will give us

1. an estimate of µ(x0), the mean value of a future observation at x0, and

2. a prediction for Y(x0), the actual value of a future observation at x0.

We can represent Ŷ(x0) by the matrix equation

Ŷ(x0) = xT0b, (12.2.14)

which is just a fancy way to write

Ŷ(x10, x20) = b0 + b1x10 + b2x20. (12.2.15)

Example 12.4. If we wanted to predict the average volume of black cherry trees that have

Girth = 15 in and are Height = 77 ft tall then we would use the estimate

µ̂(15, 77) = − 58 + 4.7(15) + 0.3(77),
≈35.6 ft3.

We would use the same estimate Ŷ = 35.6 to predict the measured Volume of another black

cherry tree – yet to be observed – that has Girth = 15 in and is Height = 77 ft tall.



12.2. ESTIMATION AND PREDICTION 273

12.2.4 How to do it with R

The fitted values are stored inside trees.lm and may be accessed with the fitted function.

We only show the first five fitted values.

> fitted(trees.lm)[1:5]

1 2 3 4 5

4.837660 4.553852 4.816981 15.874115 19.869008

The syntax for general prediction does not change much from simple linear regression. The

computations are done with the predict function as described below.

The only difference from SLR is in the way we tell R the values of the explanatory variables

for which we want predictions. In SLR we had only one independent variable but in MLR we

have many (for the trees data we have two). We will store values for the independent variables

in the data frame new, which has two columns (one for each independent variable) and three

rows (we shall make predictions at three different locations).

> new <- data.frame(Girth = c(9.1, 11.6, 12.5), Height = c(69,

+ 74, 87))

We can view the locations at which we will predict:

> new

Girth Height

1 9.1 69

2 11.6 74

3 12.5 87

We continue just like we would have done in SLR.

> predict(trees.lm, newdata = new)

1 2 3

8.264937 21.731594 30.379205

Example 12.5. Using the trees data,

1. Report a point estimate of the mean Volume of a tree of Girth 9.1 in and Height 69 ft.

The fitted value for x1 = 9.1 and x2 = 69 is 8.3, so a point estimate would be 8.3 cubic

feet.

2. Report a point prediction for and a 95% prediction interval for the Volume of a hypothet-

ical tree of Girth 12.5 in and Height 87 ft.

The fitted value for x1 = 12.5 and x2 = 87 is 30.4, so a point prediction for the Volume

is 30.4 cubic feet.
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12.2.5 Mean Square Error and Standard Error

The residuals are given by

E = Y − Ŷ = Y −HY = (I −H)Y. (12.2.16)

Now we can use Theorem 7.34 to see that the residuals are distributed

E ∼ mvnorm(mean = 0, sigma = σ2(I −H)), (12.2.17)

since (I − H)Xβ = Xβ − Xβ = 0 and (I − H) (σ2I) (I − H)T = σ2(I − H)2 = σ2(I − H). The

sum of squared errors S S E is just

S S E = ETE = YT(I −H)(I −H)Y = YT(I −H)Y. (12.2.18)

Recall that in SLR we had two parameters (β0 and β1) in our regression model and we estimated

σ2 with s2 = S S E/(n − 2). In MLR, we have p + 1 parameters in our regression model and we

might guess that to estimate σ2 we would use the mean square error S 2 defined by

S 2 =
S S E

n − (p + 1) . (12.2.19)

That would be a good guess. The residual standard error is S =
√
S 2.

12.2.6 How to do it with R

The residuals are also stored with trees.lm and may be accessed with the residuals func-

tion. We only show the first five residuals.

> residuals(trees.lm)[1:5]

1 2 3 4 5

5.4623403 5.7461484 5.3830187 0.5258848 -1.0690084

The summary function output (shown later) lists the Residual Standard Error which

is just S =
√
S 2. It is stored in the sigma component of the summary object.

> treesumry <- summary(trees.lm)

> treesumry$sigma

[1] 3.881832

For the trees data we find s ≈ 3.882.

12.2.7 Interval Estimates of the Parameters

We showed in Section 12.2.1 that b =
(
XTX

)−1
XTY, which is really just a big matrix – namely

(
XTX

)−1
XT – multiplied by Y. It stands to reason that the sampling distribution of b would be

intimately related to the distribution of Y, which we assumed to be

Y ∼ mvnorm
(
mean = Xβ, sigma = σ2I

)
. (12.2.20)
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Now recall Theorem 7.34 that we said we were going to need eventually (the time is now).

That proposition guarantees that

b ∼ mvnorm

(
mean = β, sigma = σ2

(
XTX

)−1)
, (12.2.21)

since

IE b =
(
XTX

)−1
XT(Xβ) = β, (12.2.22)

and

Var(b) =
(
XTX

)−1
XT(σ2I)X

(
XTX

)−1
= σ2

(
XTX

)−1
, (12.2.23)

the first equality following because the matrix
(
XTX

)−1
is symmetric.

There is a lot that we can glean from Equation 12.2.21. First, it follows that the estimator

b is unbiased (see Section 9.1). Second, the variances of b0, b1, . . . , bn are exactly the diagonal

elements of σ2
(
XTX

)−1
, which is completely known except for that pesky parameter σ2. Third,

we can estimate the standard error of bi (denoted S bi) with the mean square error S (defined

in the previous section) multiplied by the corresponding diagonal element of
(
XTX

)−1
. Finally,

given estimates of the standard errors we may construct confidence intervals for βi with an

interval that looks like

bi ± tα/2(df = n − p − 1)S bi . (12.2.24)

The degrees of freedom for the Student’s t distribution2 are the same as the denominator of S 2.

12.2.8 How to do it with R

To get confidence intervals for the parameters we need only use confint:

> confint(trees.lm)

2.5 % 97.5 %

(Intercept) -75.68226247 -40.2930554

Girth 4.16683899 5.2494820

Height 0.07264863 0.6058538

For example, using the calculations above we say that for the regression model Volume

~Girth + Height we are 95% confident that the parameter β1 lies somewhere in the interval

[4.2, 5.2].

12.2.9 Confidence and Prediction Intervals

We saw in Section 12.2.3 how to make point estimates of the mean value of additional obser-

vations and predict values of future observations, but how good are our estimates? We need

confidence and prediction intervals to gauge their accuracy, and lucky for us the formulas look

similar to the ones we saw in SLR.

In Equation 12.2.14 we wrote Ŷ(x0) = xT0b, and in Equation 12.2.21 we saw that

b ∼ mvnorm

(
mean = β, sigma = σ2

(
XTX

)−1)
, (12.2.25)

2We are taking great leaps over the mathematical details. In particular, we have yet to show that s2 has a

chi-square distribution and we have not even come close to showing that bi and sbi are independent. But these are

entirely outside the scope of the present book and the reader may rest assured that the proofs await in later classes.

See C.R. Rao for more.
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The following is therefore immediate from Theorem 7.34:

Ŷ(x0) ∼ mvnorm

(
mean = xT0β, sigma = σ

2xT0

(
XTX

)−1
x0

)
. (12.2.26)

It should be no surprise that confidence intervals for the mean value of a future observation at

the location x0 =
[
x10 x20 . . . xp0

]T
are given by

Ŷ(x0) ± tα/2(df = n − p − 1) S
√
xT
0

(
XTX

)−1
x0. (12.2.27)

Intuitively, xT0

(
XTX

)−1
x0 measures the distance of x0 from the center of the data. The degrees

of freedom in the Student’s t critical value are n − (p + 1) because we need to estimate p + 1

parameters.

Prediction intervals for a new observation at x0 are given by

Ŷ(x0) ± tα/2(df = n − p − 1) S
√
1 + xT

0

(
XTX

)−1
x0. (12.2.28)

The prediction intervals are wider than the confidence intervals, just as in Section 11.2.5.

12.2.10 How to do it with R

The syntax is identical to that used in SLR, with the proviso that we need to specify values of

the independent variables in the data frame new as we did in Section 11.2.5 (which we repeat

here for illustration).

> new <- data.frame(Girth = c(9.1, 11.6, 12.5), Height = c(69,

+ 74, 87))

Confidence intervals are given by

> predict(trees.lm, newdata = new, interval = "confidence")

fit lwr upr

1 8.264937 5.77240 10.75747

2 21.731594 20.11110 23.35208

3 30.379205 26.90964 33.84877

Prediction intervals are given by

> predict(trees.lm, newdata = new, interval = "prediction")

fit lwr upr

1 8.264937 -0.06814444 16.59802

2 21.731594 13.61657775 29.84661

3 30.379205 21.70364103 39.05477

As before, the interval type is decided by the interval argument and the default confi-

dence level is 95% (which can be changed with the level argument).

Example 12.6. Using the trees data,



12.3. MODEL UTILITY AND INFERENCE 277

1. Report a 95% confidence interval for the mean Volume of a tree of Girth 9.1 in and

Height 69 ft.

The 95% CI is given by [5.8, 10.8], so with 95% confidence the mean Volume lies some-

where between 5.8 cubic feet and 10.8 cubic feet.

2. Report a 95% prediction interval for the Volume of a hypothetical tree of Girth 12.5 in

and Height 87 ft.

The 95% prediction interval is given by [26.9, 33.8], so with 95% confidence we may

assert that the hypothetical Volume of a tree of Girth 12.5 in and Height 87 ft would lie

somewhere between 26.9 cubic feet and 33.8 feet.

12.3 Model Utility and Inference

12.3.1 Multiple Coefficient of Determination

We saw in Section 12.2.5 that the error sum of squares S S E can be conveniently written in

MLR as

S S E = YT(I −H)Y. (12.3.1)

It turns out that there are equally convenient formulas for the total sum of squares S S TO and

the regression sum of squares S SR. They are :

S S TO =YT

(
I − 1

n
J

)
Y (12.3.2)

and

S SR =YT

(
H − 1

n
J

)
Y. (12.3.3)

(The matrix J is defined in Appendix E.5.) Immediately from Equations 12.3.1, 12.3.2, and

12.3.3 we get the Anova Equality

S S TO = S S E + S SR. (12.3.4)

(See Exercise 12.1.) We define the multiple coefficient of determination by the formula

R2 = 1 − S S E

S S TO
. (12.3.5)

We interpret R2 as the proportion of total variation that is explained by the multiple regres-

sion model. In MLR we must be careful, however, because the value of R2 can be artificially

inflated by the addition of explanatory variables to the model, regardless of whether or not the

added variables are useful with respect to prediction of the response variable. In fact, it can be

proved that the addition of a single explanatory variable to a regression model will increase the

value of R2, no matter how worthless the explanatory variable is. We could model the height

of the ocean tides, then add a variable for the length of cheetah tongues on the Serengeti plain,

and our R2 would inevitably increase.
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This is a problem, because as the philosopher, Occam, once said: “causes should not be

multiplied beyond necessity”. We address the problem by penalizing R2 when parameters are

added to the model. The result is an adjusted R2 which we denote by R
2
.

R
2
=

(
R2 − p

n − 1

) (
n − 1

n − p − 1

)
. (12.3.6)

It is good practice for the statistician to weigh bothR2 and R
2
during assessment of model utility.

In many cases their values will be very close to each other. If their values differ substantially,

or if one changes dramatically when an explanatory variable is added, then (s)he should take a

closer look at the explanatory variables in the model.

12.3.2 How to do it with R

For the trees data, we can get R2 and R
2
from the summary output or access the values directly

by name as shown (recall that we stored the summary object in treesumry).

> treesumry$r.squared

[1] 0.94795

> treesumry$adj.r.squared

[1] 0.9442322

High values of R2 and R
2
such as these indicate that the model fits very well, which agrees

with what we saw in Figure 12.1.2.

12.3.3 Overall F-Test

Another way to assess the model’s utility is to to test the hypothesis

H0 : β1 = β2 = · · · = βp = 0 versus H1 : at least one βi , 0.

The idea is that if all βi’s were zero, then the explanatory variables X1, . . . , Xp would be worth-

less predictors for the response variable Y . We can test the above hypothesis with the overall F

statistic, which in MLR is defined by

F =
S SR/p

S S E/(n − p − 1) . (12.3.7)

When the regression assumptions hold and under H0, it can be shown that F ∼ f(df1 =

p, df2 = n − p − 1). We reject H0 when F is large, that is, when the explained variation

is large relative to the unexplained variation.

12.3.4 How to do it with R

The overall F statistic and its associated p-value is listed at the bottom of the summary output,

or we can access it directly by name; it is stored in the fstatistic component of the summary

object.

> treesumry$fstatistic

value numdf dendf

254.9723 2.0000 28.0000

For the trees data, we see that F = 254.972337410669 with a p-value < 2.2e-16. Con-

sequently we reject H0, that is, the data provide strong evidence that not all βi’s are zero.
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12.3.5 Student’s t Tests

We know that

b ∼ mvnorm

(
mean = β, sigma = σ2

(
XTX

)−1)
(12.3.8)

and we have seen how to test the hypothesis H0 : β1 = β2 = · · · = βp = 0, but let us now

consider the test

H0 : βi = 0 versus H1 : βi , 0, (12.3.9)

where βi is the coefficient for the i
th independent variable. We test the hypothesis by calculating

a statistic, examining it’s null distribution, and rejecting H0 if the p-value is small. If H0

is rejected, then we conclude that there is a significant relationship between Y and xi in the

regression model Y ∼ (x1, . . . , xp). This last part of the sentence is very important because

the significance of the variable xi sometimes depends on the presence of other independent

variables in the model3.

To test the hypothesis we go to find the sampling distribution of bi, the estimator of the

corresponding parameter βi, when the null hypothesis is true. We saw in Section 12.2.7 that

Ti =
bi − βi
S bi

(12.3.10)

has a Student’s t distribution with n−(p+1) degrees of freedom. (Remember, we are estimating

p + 1 parameters.) Consequently, under the null hypothesis H0 : βi = 0 the statistic ti = bi/S bi

has a t(df = n − p − 1) distribution.

12.3.6 How to do it with R

The Student’s t tests for significance of the individual explanatory variables are shown in the

summary output.

> treesumry

Call:

lm(formula = Volume ~ Girth + Height, data = trees)

Residuals:

Min 1Q Median 3Q Max

-6.4065 -2.6493 -0.2876 2.2003 8.4847

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) -57.9877 8.6382 -6.713 2.75e-07 ***

Girth 4.7082 0.2643 17.816 < 2e-16 ***

Height 0.3393 0.1302 2.607 0.0145 *

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 3.882 on 28 degrees of freedom

3In other words, a variable might be highly significant one moment but then fail to be significant when another

variable is added to the model. When this happens it often indicates a problem with the explanatory variables,

such as multicollinearity. See Section 12.9.3.
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Figure 12.4.1: Scatterplot of Volume versus Girth for the trees data

Multiple R-squared: 0.948, Adjusted R-squared: 0.9442

F-statistic: 255 on 2 and 28 DF, p-value: < 2.2e-16

We see from the p-values that there is a significant linear relationship between Volume and

Girth and between Volume and Height in the regression model Volume ~Girth + Height.

Further, it appears that the Intercept is significant in the aforementioned model.

12.4 Polynomial Regression

12.4.1 Quadratic Regression Model

In each of the previous sections we assumed that µ was a linear function of the explanatory

variables. For example, in SLR we assumed that µ(x) = β0 + β1x, and in our previous MLR

examples we assumed µ(x1, x2) = β0 + β1x1 + β2x2. In every case the scatterplots indicated that

our assumption was reasonable. Sometimes, however, plots of the data suggest that the linear

model is incomplete and should be modified.

For example, let us examine a scatterplot of Volume versus Girth a little more closely. See

Figure 12.4.1. There might be a slight curvature to the data; the volume curves ever so slightly

upward as the girth increases. After looking at the plot we might try to capture the curvature

with a mean response such as

µ(x1) = β0 + β1x1 + β2x
2
1. (12.4.1)

The model associated with this choice of µ is

Y = β0 + β1x1 + β2x
2
1 + ǫ. (12.4.2)



12.4. POLYNOMIAL REGRESSION 281

The regression assumptions are the same. Almost everything indeed is the same. In fact, it is

still called a “linear regression model”, since the mean response µ is linear in the parameters

β0, β1, and β2.

However, there is one important difference. When we introduce the squared variable in

the model we inadvertently also introduce strong dependence between the terms which can

cause significant numerical problems when it comes time to calculate the parameter estimates.

Therefore, we should usually rescale the independent variable to have mean zero (and even

variance one if we wish) before fitting the model. That is, we replace the xi’s with xi − x (or

(xi − x)/s) before fitting the model4.

How to do it with R

There are multiple ways to fit a quadratic model to the variables Volume and Girth using R.

1. One way would be to square the values for Girth and save them in a vector Girthsq.

Next, fit the linear model Volume ~Girth + Girthsq.

2. A second way would be to use the insulate function in R, denoted by I:

Volume ~ Girth + I(Girth^2)

The second method is shorter than the first but the end result is the same. And once we

calculate and store the fitted model (in, say, treesquad.lm) all of the previous com-

ments regarding R apply.

3. A third and “right” way to do it is with orthogonal polynomials:

Volume ~ poly(Girth , degree = 2)

See ?poly and ?cars for more information. Note that we can recover the approach in 2

with poly(Girth, degree = 2, raw = TRUE).

Example 12.7. We will fit the quadratic model to the trees data and display the results with

summary, being careful to rescale the data before fitting the model. We may rescale the Girth

variable to have zero mean and unit variance on-the-fly with the scale function.

> treesquad.lm <- lm(Volume ~ scale(Girth) + I(scale(Girth)^2),

+ data = trees)

> summary(treesquad.lm)

Call:

lm(formula = Volume ~ scale(Girth) + I(scale(Girth)^2), data = trees)

Residuals:

Min 1Q Median 3Q Max

-5.4889 -2.4293 -0.3718 2.0764 7.6447

4Rescaling the data gets the job done but a better way to avoid the multicollinearity introduced by the higher

order terms is with orthogonal polynomials, whose coefficients are chosen just right so that the polynomials are

not correlated with each other. This is beginning to linger outside the scope of this book, however, so we will

content ourselves with a brief mention and then stick with the rescaling approach in the discussion that follows. A

nice example of orthogonal polynomials in action can be run with example(cars).
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Figure 12.4.2: A quadratic model for the trees data

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 27.7452 0.8161 33.996 < 2e-16 ***

scale(Girth) 14.5995 0.6773 21.557 < 2e-16 ***

I(scale(Girth)^2) 2.5067 0.5729 4.376 0.000152 ***

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 3.335 on 28 degrees of freedom

Multiple R-squared: 0.9616, Adjusted R-squared: 0.9588

F-statistic: 350.5 on 2 and 28 DF, p-value: < 2.2e-16

We see that the F statistic indicates the overall model including Girth and Girth^2 is

significant. Further, there is strong evidence that both Girth and Girth^2 are significantly

related to Volume. We may examine a scatterplot together with the fitted quadratic function

using the lines function, which adds a line to the plot tracing the estimated mean response.

> plot(Volume ~ scale(Girth), data = trees)

> lines(fitted(treesquad.lm) ~ scale(Girth), data = trees)

The plot is shown in Figure 12.4.2. Pay attention to the scale on the x-axis: it is on the scale

of the transformed Girth data and not on the original scale.

Remark 12.8. When a model includes a quadratic term for an independent variable, it is cus-

tomary to also include the linear term in the model. The principle is called parsimony. More

generally, if the researcher decides to include xm as a term in the model, then (s)he should also

include all lower order terms x, x2, . . . ,xm−1 in the model.
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We do estimation/prediction the same way that we did in Section 12.2.3, except we do not

need a Height column in the dataframe new since the variable is not included in the quadratic

model.

> new <- data.frame(Girth = c(9.1, 11.6, 12.5))

> predict(treesquad.lm, newdata = new, interval = "prediction")

fit lwr upr

1 11.56982 4.347426 18.79221

2 20.30615 13.299050 27.31325

3 25.92290 18.972934 32.87286

The predictions and intervals are slightly different from what they were previously. Notice

that it was not necessary to rescale the Girth prediction data before input to the predict

function; the model did the rescaling for us automatically.

Remark 12.9. We have mentioned on several occasions that it is important to rescale the ex-

planatory variables for polynomial regression. Watch what happens if we ignore this advice:

> summary(lm(Volume ~ Girth + I(Girth^2), data = trees))

Call:

lm(formula = Volume ~ Girth + I(Girth^2), data = trees)

Residuals:

Min 1Q Median 3Q Max

-5.4889 -2.4293 -0.3718 2.0764 7.6447

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 10.78627 11.22282 0.961 0.344728

Girth -2.09214 1.64734 -1.270 0.214534

I(Girth^2) 0.25454 0.05817 4.376 0.000152 ***

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 3.335 on 28 degrees of freedom

Multiple R-squared: 0.9616, Adjusted R-squared: 0.9588

F-statistic: 350.5 on 2 and 28 DF, p-value: < 2.2e-16

Now nothing is significant in the model except Girth^2. We could delete the Intercept

and Girth from the model, but the model would no longer be parsimonious. A novice may see

the output and be confused about how to proceed, while the seasoned statistician recognizes

immediately that Girth and Girth^2 are highly correlated (see Section 12.9.3). The only

remedy to this ailment is to rescale Girth, which we should have done in the first place.

In Example 12.14 of Section 12.7 we investigate this issue further.

12.5 Interaction

In our model for tree volume there have been two independent variables: Girth and Height.

We may suspect that the independent variables are related, that is, values of one variable may
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tend to influence values of the other. It may be desirable to include an additional term in our

model to try and capture the dependence between the variables. Interaction terms are formed

by multiplying one (or more) explanatory variable(s) by another.

Example 12.10. Perhaps the Girth and Height of the tree interact to influence the its Volume;

we would like to investigate whether the model (Girth = x1 and Height = x2)

Y = β0 + β1x1 + β2x2 + ǫ (12.5.1)

would be significantly improved by the model

Y = β0 + β1x1 + β2x2 + β1:2x1x2 + ǫ, (12.5.2)

where the subscript 1 : 2 denotes that β1:2 is a coefficient of an interaction term between x1 and

x2.

What does it mean? Consider the mean response µ(x1, x2) as a function of x2:

µ(x2) = (β0 + β1x1) + β2x2. (12.5.3)

This is a linear function of x2 with slope β2. As x1 changes, the y-intercept of the mean response

in x2 changes, but the slope remains the same. Therefore, the mean response in x2 is represented

by a collection of parallel lines all with common slope β2.

Now think about what happens when the interaction term β1:2x1x2 is included. The mean

response in x2 now looks like

µ(x2) = (β0 + β1x1) + (β2 + β1:2x1)x2. (12.5.4)

In this case we see that not only the y-intercept changes when x1 varies, but the slope also

changes in x1. Thus, the interaction term allows the slope of the mean response in x2 to increase

and decrease as x1 varies.

How to do it with R

There are several ways to introduce an interaction term into the model.

1. Make a new variable prod <-Girth *Height, then include prod in the model formula

Volume ~Girth + Height + prod. This method is perhaps the most transparent, but

it also reserves memory space unnecessarily.

2. Once can construct an interaction term directly in R with a colon “:”. For this example,

the model formula would look like Volume ~Girth + Height + Girth:Height.

For the trees data, we fit the model with the interaction using method two and see if it is

significant:

> treesint.lm <- lm(Volume ~ Girth + Height + Girth:Height,

+ data = trees)

> summary(treesint.lm)
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Call:

lm(formula = Volume ~ Girth + Height + Girth:Height, data = trees)

Residuals:

Min 1Q Median 3Q Max

-6.5821 -1.0673 0.3026 1.5641 4.6649

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 69.39632 23.83575 2.911 0.00713 **

Girth -5.85585 1.92134 -3.048 0.00511 **

Height -1.29708 0.30984 -4.186 0.00027 ***

Girth:Height 0.13465 0.02438 5.524 7.48e-06 ***

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 2.709 on 27 degrees of freedom

Multiple R-squared: 0.9756, Adjusted R-squared: 0.9728

F-statistic: 359.3 on 3 and 27 DF, p-value: < 2.2e-16

We can see from the output that the interaction term is highly significant. Further, the

estimate b1:2 is positive. This means that the slope of µ(x2) is steeper for bigger values of

Girth. Keep in mind: the same interpretation holds for µ(x1); that is, the slope of µ(x1) is

steeper for bigger values of Height.

For the sake of completeness we calculate confidence intervals for the parameters and do

prediction as before.

> confint(treesint.lm)

2.5 % 97.5 %

(Intercept) 20.48938699 118.3032441

Girth -9.79810354 -1.9135923

Height -1.93282845 -0.6613383

Girth:Height 0.08463628 0.1846725

> new <- data.frame(Girth = c(9.1, 11.6, 12.5), Height = c(69,

+ 74, 87))

> predict(treesint.lm, newdata = new, interval = "prediction")

fit lwr upr

1 11.15884 5.236341 17.08134

2 21.07164 15.394628 26.74866

3 29.78862 23.721155 35.85608

Remark 12.11. There are two other ways to include interaction terms in model formulas. For

example, we could have written Girth *Height or even (Girth + Height)^2 and both

would be the same as Girth + Height + Girth:Height.

These examples can be generalized to more than two independent variables, say three, four, or

even more. We may be interested in seeing whether any pairwise interactions are significant.

We do this with a model formula that looks something like y ~ (x1 + x2 + x3 + x4)^2.
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12.6 Qualitative Explanatory Variables

We have so far been concerned with numerical independent variables taking values in a subset

of real numbers. In this section, we extend our treatment to include the case in which one of

the explanatory variables is qualitative, that is, a factor. Qualitative variables take values in a

set of levels, which may or may not be ordered. See Section 3.1.2.

Note. The trees data do not have any qualitative explanatory variables, so we will construct

one for illustrative purposes5. We will leave the Girth variable alone, but we will replace the

variable Height by a new variable Tall which indicates whether or not the cherry tree is taller

than a certain threshold (which for the sake of argument will be the sample median height of

76 ft). That is, Tall will be defined by

Tall =


yes, if Height > 76,

no, if Height ≤ 76.
(12.6.1)

We can construct Tall very quickly in R with the cut function:

> trees$Tall <- cut(trees$Height, breaks = c(-Inf, 76, Inf),

+ labels = c("no", "yes"))

> trees$Tall[1:5]

[1] no no no no yes

Levels: no yes

Note that Tall is automatically generated to be a factor with the labels in the correct order.

See ?cut for more.

Once we have Tall, we include it in the regression model just like we would any other

variable. It is handled internally in a special way. Define a “dummy variable” Tallyes that

takes values

Tallyes =


1, if Tall = yes,

0, otherwise.
(12.6.2)

That is, Tallyes is an indicator variable which indicates when a respective tree is tall. The

model may now be written as

Volume = β0 + β1Girth + β2Tallyes + ǫ. (12.6.3)

Let us take a look at what this definition does to the mean response. Trees with Tall = yes

will have the mean response

µ(Girth) = (β0 + β2) + β1Girth, (12.6.4)

while trees with Tall = no will have the mean response

µ(Girth) = β0 + β1Girth. (12.6.5)

In essence, we are fitting two regression lines: one for tall trees, and one for short trees. The

regression lines have the same slope but they have different y intercepts (which are exactly |β2|
far apart).

5This procedure of replacing a continuous variable by a discrete/qualitative one is called binning, and is almost

never the right thing to do. We are in a bind at this point, however, because we have invested this chapter in the

trees data and I do not want to switch mid-discussion. I am currently searching for a data set with pre-existing

qualitative variables that also conveys the same points present in the trees data, and when I find it I will update

this chapter accordingly.
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How to do it with R

The important thing is to double check that the qualitative variable in question is stored as a

factor. The way to check is with the class command. For example,

> class(trees$Tall)

[1] "factor"

If the qualitative variable is not yet stored as a factor then we may convert it to one with the

factor command. See Section 3.1.2. Other than this we perform MLR as we normally would.

> treesdummy.lm <- lm(Volume ~ Girth + Tall, data = trees)

> summary(treesdummy.lm)

Call:

lm(formula = Volume ~ Girth + Tall, data = trees)

Residuals:

Min 1Q Median 3Q Max

-5.7788 -3.1710 0.4888 2.6737 10.0619

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) -34.1652 3.2438 -10.53 3.02e-11 ***

Girth 4.6988 0.2652 17.72 < 2e-16 ***

Tallyes 4.3072 1.6380 2.63 0.0137 *

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 3.875 on 28 degrees of freedom

Multiple R-squared: 0.9481, Adjusted R-squared: 0.9444

F-statistic: 255.9 on 2 and 28 DF, p-value: < 2.2e-16

From the output we see that all parameter estimates are statistically significant and we

conclude that the mean response differs for trees with Tall = yes and trees with Tall = no.

Remark 12.12. Wewere somewhat disingenuouswhenwe defined the dummy variable Tallyes

because, in truth, R defines Tallyes automatically without input from the user6. Indeed, the

author fit the model beforehand and wrote the discussion afterward with the knowledge of what

R would do so that the output the reader saw would match what (s)he had previously read. The

way that R handles factors internally is part of a much larger topic concerning contrasts, which

falls outside the scope of this book. The interested reader should see Neter et al [67] or Fox

[28] for more.

Remark 12.13. In general, if an explanatory variable foo is qualitative with n levels bar1,

bar2, . . . , barn then R will by default automatically define n − 1 indicator variables in the

following way:

foobar2 =


1, if foo = ”bar2”,

0, otherwise.
, . . . , foobarn =


1, if foo = ”barn”,

0, otherwise.

6That is, R by default handles contrasts according to its internal settings which may be customized by the user

for fine control. Given that we will not investigate contrasts further in this book it does not serve the discussion to

delve into those settings, either. The interested reader should check ?contrasts for details.
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Figure 12.6.1: A dummy variable model for the trees data

The level bar1 is represented by foobar2 = · · · = foobarn = 0. We just need to make sure

that foo is stored as a factor and R will take care of the rest.

Graphing the Regression Lines

We can see a plot of the two regression lines with the following mouthful of code.

> treesTall <- split(trees, trees$Tall)

> treesTall[["yes"]]$Fit <- predict(treesdummy.lm, treesTall[["yes"]])

> treesTall[["no"]]$Fit <- predict(treesdummy.lm, treesTall[["no"]])

> plot(Volume ~ Girth, data = trees, type = "n")

> points(Volume ~ Girth, data = treesTall[["yes"]], pch = 1)

> points(Volume ~ Girth, data = treesTall[["no"]], pch = 2)

> lines(Fit ~ Girth, data = treesTall[["yes"]])

> lines(Fit ~ Girth, data = treesTall[["no"]])

It may look intimidating but there is reason to the madness. First we split the trees data

into two pieces, with groups determined by the Tall variable. Next we add the Fitted values

to each piece via predict. Then we set up a plot for the variables Volume versus Girth,

but we do not plot anything yet (type = n) because we want to use different symbols for the

two groups. Next we add points to the plot for the Tall = yes trees and use an open circle

for a plot character (pch = 1), followed by points for the Tall = no trees with a triangle

character (pch = 2). Finally, we add regression lines to the plot, one for each group.

There are other – shorter – ways to plot regression lines by groups, namely the scatterplot

function in the car [30] package and the xyplot function in the lattice package. We elected
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to introduce the reader to the above approach since many advanced plots in R are done in a

similar, consecutive fashion.

12.7 Partial F Statistic

We saw in Section 12.3.3 how to test H0 : β0 = β1 = · · · = βp = 0 with the overall F statistic

and we saw in Section 12.3.5 how to test H0 : βi = 0 that a particular coefficient βi is zero.

Sometimes, however, we would like to test whether a certain part of the model is significant.

Consider the regression model

Y = β0 + β1x1 + · · · + β jx j + β j+1x j+1 + · · · + βpxp + ǫ, (12.7.1)

where j ≥ 1 and p ≥ 2. Now we wish to test the hypothesis

H0 : β j+1 = β j+2 = · · · = βp = 0 (12.7.2)

versus the alternative

H1 : at least one of β j+1, β j+2, , . . . , βp , 0. (12.7.3)

The interpretation of H0 is that none of the variables x j+1, . . . ,xp is significantly related to Y

and the interpretation of H1 is that at least one of x j+1, . . . ,xp is significantly related to Y . In

essence, for this hypothesis test there are two competing models under consideration:

the full model: y = β0 + β1x1 + · · · + βpxp + ǫ, (12.7.4)

the reduced model: y = β0 + β1x1 + · · · + β jx j + ǫ, (12.7.5)

Of course, the full model will always explain the data better than the reduced model, but does

the full model explain the data significantly better than the reduced model? This question is

exactly what the partial F statistic is designed to answer.

We first calculate S S E f , the unexplained variation in the full model, and S S Er, the unex-

plained variation in the reduced model. We base our test on the difference S S Er−S S E f which

measures the reduction in unexplained variation attributable to the variables x j+1, . . . ,xp. In the

full model there are p+1 parameters and in the reduced model there are j+1 parameters, which

gives a difference of p − j parameters (hence degrees of freedom). The partial F statistic is

F =
(S S Er − S S E f )/(p − j)

S S E f/(n − p − 1) . (12.7.6)

It can be shown when the regression assumptions hold under H0 that the partial F statistic has

an f(df1 = p− j, df2 = n− p−1) distribution. We calculate the p-value of the observed partial

F statistic and reject H0 if the p-value is small.

How to do it with R

The key ingredient above is that the two competing models are nested in the sense that the

reduced model is entirely contained within the complete model. The way to test whether the

improvement is significant is to compute lm objects both for the complete model and the re-

duced model then compare the answers with the anova function.
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Example 12.14. For the trees data, let us fit a polynomial regression model and for the sake

of argument we will ignore our own good advice and fail to rescale the explanatory variables.

> treesfull.lm <- lm(Volume ~ Girth + I(Girth^2) + Height +

+ I(Height^2), data = trees)

> summary(treesfull.lm)

Call:

lm(formula = Volume ~ Girth + I(Girth^2) + Height + I(Height^2),

data = trees)

Residuals:

Min 1Q Median 3Q Max

-4.3679 -1.6698 -0.1580 1.7915 4.3581

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) -0.955101 63.013630 -0.015 0.988

Girth -2.796569 1.468677 -1.904 0.068 .

I(Girth^2) 0.265446 0.051689 5.135 2.35e-05 ***

Height 0.119372 1.784588 0.067 0.947

I(Height^2) 0.001717 0.011905 0.144 0.886

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 2.674 on 26 degrees of freedom

Multiple R-squared: 0.9771, Adjusted R-squared: 0.9735

F-statistic: 277 on 4 and 26 DF, p-value: < 2.2e-16

In this ill-formed model nothing is significant except Girth and Girth^2. Let us continue

down this path and suppose that we would like to try a reduced model which contains nothing

but Girth and Girth^2 (not even an Intercept). Our two models are now

the full model: Y = β0 + β1x1 + β2x
2
1 + β3x2 + β4x

2
2 + ǫ,

the reduced model: Y = β1x1 + β2x
2
1 + ǫ,

We fit the reduced model with lm and store the results:

> treesreduced.lm <- lm(Volume ~ -1 + Girth + I(Girth^2), data = trees)

To delete the intercept from the model we used -1 in the model formula. Next we compare

the two models with the anova function. The convention is to list the models from smallest to

largest.

> anova(treesreduced.lm, treesfull.lm)

Analysis of Variance Table

Model 1: Volume ~ -1 + Girth + I(Girth^2)

Model 2: Volume ~ Girth + I(Girth^2) + Height + I(Height^2)
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Res.Df RSS Df Sum of Sq F Pr(>F)

1 29 321.65

2 26 185.86 3 135.79 6.3319 0.002279 **

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

We see from the output that the complete model is highly significant compared to the model

that does not incorporate Height or the Intercept. We wonder (with our tongue in our cheek)

if the Height^2 term in the full model is causing all of the trouble. We will fit an alternative

reduced model that only deletes Height^2.

> treesreduced2.lm <- lm(Volume ~ Girth + I(Girth^2) + Height,

+ data = trees)

> anova(treesreduced2.lm, treesfull.lm)

Analysis of Variance Table

Model 1: Volume ~ Girth + I(Girth^2) + Height

Model 2: Volume ~ Girth + I(Girth^2) + Height + I(Height^2)

Res.Df RSS Df Sum of Sq F Pr(>F)

1 27 186.01

2 26 185.86 1 0.14865 0.0208 0.8865

In this case, the improvement to the reduced model that is attributable to Height^2 is not

significant, so we can delete Height^2 from the model with a clear conscience. We notice that

the p-value for this latest partial F test is 0.8865, which seems to be remarkably close to the

p-value we saw for the univariate t test of Height^2 at the beginning of this example. In fact,

the p-values are exactly the same. Perhaps now we gain some insight into the true meaning of

the univariate tests.

12.8 Residual Analysis and Diagnostic Tools

We encountered many, many diagnostic measures for simple linear regression in Sections 11.4

and 11.5. All of these are valid in multiple linear regression, too, but there are some slight

changes that we need to make for the multivariate case. We list these below, and apply them to

the trees example.

Shapiro-Wilk, Breusch-Pagan, Durbin-Watson: unchanged from SLR, but we are now equipped

to talk about the Shapiro-Wilk test statistic for the residuals. It is defined by the formula

W =
aTE∗

ETE
, (12.8.1)

where E∗ is the sorted residuals and a1×n is defined by

a =
mTV−1

√
mTV−1V−1m

, (12.8.2)

where mn×1 and Vn×n are the mean and covariance matrix, respectively, of the order

statistics from an mvnorm (mean = 0, sigma = I) distribution.
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Leverages: are defined to be the diagonal entries of the hat matrix H (which is why we called

them hii in Section 12.2.3). The sum of the leverages is tr(H) = p+ 1. One rule of thumb

considers a leverage extreme if it is larger than double the mean leverage value, which

is 2(p + 1)/n, and another rule of thumb considers leverages bigger than 0.5 to indicate

high leverage, while values between 0.3 and 0.5 indicate moderate leverage.

Standardized residuals: unchanged. Considered extreme if |Ri| > 2.

Studentized residuals: compared to a t(df = n − p − 2) distribution.

DFBETAS : The formula is generalized to

(DFBETAS ) j(i) =
b j − b j(i)

S (i)
√
c j j

, j = 0, . . . p, i = 1, . . . , n, (12.8.3)

where c j j is the jth diagonal entry of (XTX)−1. Values larger than one for small data sets

or 2/
√
n for large data sets should be investigated.

DFFITS : unchanged. Larger than one in absolute value is considered extreme.

Cook’s D: compared to an f(df1 = p + 1, df2 = n − p − 1) distribution. Observations falling
higher than the 50th percentile are extreme.

Note that plugging the value p = 1 into the formulas will recover all of the ones we saw in

Chapter 11.

12.9 Additional Topics

12.9.1 Nonlinear Regression

We spent the entire chapter talking about the trees data, and all of our models looked like

Volume ~Girth + Height or a variant of this model. But let us think again: we know from

elementary school that the volume of a rectangle is V = lwh and the volume of a cylinder

(which is closer to what a black cherry tree looks like) is

V = πr2h or V = 4πdh, (12.9.1)

where r and d represent the radius and diameter of the tree, respectively. With this in mind, it

would seem that a more appropriate model for µ might be

µ(x1, x2) = β0x
β1
1
x
β2
2
, (12.9.2)

where β1 and β2 are parameters to adjust for the fact that a black cherry tree is not a perfect

cylinder.

How can we fit this model? The model is not linear in the parameters any more, so our

linear regression methods will not work. . . or will they? In the trees example we may take the

logarithm of both sides of Equation 12.9.2 to get

µ∗(x1, x2) = ln
[
µ(x1, x2)

]
= ln β0 + β1 ln x1 + β2 ln x2, (12.9.3)

and this new model µ∗ is linear in the parameters β∗0 = ln β0, β
∗
1 = β1 and β

∗
2 = β2. We can

use what we have learned to fit a linear model log(Volume)~log(Girth)+ log(Height),
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and everything will proceed as before, with one exception: we will need to be mindful when it

comes time to make predictions because the model will have been fit on the log scale, and we

will need to transform our predictions back to the original scale (by exponentiating with exp)

to make sense.

> treesNonlin.lm <- lm(log(Volume) ~ log(Girth) + log(Height),

+ data = trees)

> summary(treesNonlin.lm)

Call:

lm(formula = log(Volume) ~ log(Girth) + log(Height), data = trees)

Residuals:

Min 1Q Median 3Q Max

-0.168561 -0.048488 0.002431 0.063637 0.129223

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) -6.63162 0.79979 -8.292 5.06e-09 ***

log(Girth) 1.98265 0.07501 26.432 < 2e-16 ***

log(Height) 1.11712 0.20444 5.464 7.81e-06 ***

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.08139 on 28 degrees of freedom

Multiple R-squared: 0.9777, Adjusted R-squared: 0.9761

F-statistic: 613.2 on 2 and 28 DF, p-value: < 2.2e-16

This is our best model yet (judging by R2 and R
2
), all of the parameters are significant, it is

simpler than the quadratic or interaction models, and it even makes theoretical sense. It rarely

gets any better than that.

We may get confidence intervals for the parameters, but remember that it is usually better

to transform back to the original scale for interpretation purposes :

> exp(confint(treesNonlin.lm))

2.5 % 97.5 %

(Intercept) 0.0002561078 0.006783093

log(Girth) 6.2276411645 8.468066317

log(Height) 2.0104387829 4.645475188

(Note that we did not update the row labels of the matrix to show that we exponentiated and

so they are misleading as written.) We do predictions just as before. Remember to transform

the response variable back to the original scale after prediction.

> new <- data.frame(Girth = c(9.1, 11.6, 12.5), Height = c(69,

+ 74, 87))

> exp(predict(treesNonlin.lm, newdata = new, interval = "confidence"))
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fit lwr upr

1 11.90117 11.25908 12.57989

2 20.82261 20.14652 21.52139

3 28.93317 27.03755 30.96169

The predictions and intervals are slightly different from those calculated earlier, but they

are close. Note that we did not need to transform the Girth and Height arguments in the

dataframe new. All transformations are done for us automatically.

12.9.2 Real Nonlinear Regression

We saw with the trees data that a nonlinear model might be more appropriate for the data

based on theoretical considerations, and we were lucky because the functional form of µ al-

lowed us to take logarithms to transform the nonlinear model to a linear one. The same trick

will not work in other circumstances, however. We need techniques to fit general models of the

form

Y = µ(X) + ǫ, (12.9.4)

where µ is some crazy function that does not lend itself to linear transformations.

There are a host of methods to address problems like these which are studied in advanced

regression classes. The interested reader should see Neter et al [67] or Tabachnick and Fidell

[83].

It turns out that John Fox has posted an Appendix to his book [29] which discusses some

of the methods and issues associated with nonlinear regression; see

http://cran.r-project.org/doc/contrib/Fox-Companion/appendix.html

12.9.3 Multicollinearity

A multiple regression model exhibits multicollinearity when two or more of the explanatory

variables are substantially correlated with each other. We can measure multicollinearity by

having one of the explanatory play the role of “dependent variable” and regress it on the re-

maining explanatory variables. The the R2 of the resulting model is near one, then we say that

the model is multicollinear or shows multicollinearity.

Multicollinearity is a problem because it causes instability in the regression model. The

instability is a consequence of redundancy in the explanatory variables: a high R2 indicates a

strong dependence between the selected independent variable and the others. The redundant

information inflates the variance of the parameter estimates which can cause them to be statis-

tically insignificant when they would have been significant otherwise. To wit, multicollinearity

is usually measured by what are called variance inflation factors.

Once multicollinearity has been diagnosed there are several approaches to remediate it.

Here are a couple of important ones.

Principal Components Analysis. This approach casts out two or more of the original explana-

tory variables and replaces them with new variables, derived from the original ones, that

are by design uncorrelated with one another. The redundancy is thus eliminated and we

may proceed as usual with the new variables in hand. Principal Components Analysis is

important for other reasons, too, not just for fixing multicollinearity problems.

http://cran.r-project.org/doc/contrib/Fox-Companion/appendix.html
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Ridge Regression. The idea of this approach is to replace the original parameter estimates

with a different type of parameter estimate which is more stable under multicollinearity.

The estimators are not found by ordinary least squares but rather a different optimization

procedure which incorporates the variance inflation factor information.

We decided to omit a thorough discussion of multicollinearity because we are not equipped to

handle the mathematical details. Perhaps the topic will receive more attention in a later edition.

• What to do when data are not normal

◦ Bootstrap (see Chapter 13).

12.9.4 Akaike’s Information Criterion

AIC = −2 ln L + 2(p + 1)
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Chapter Exercises

Exercise 12.1. Use Equations 12.3.1, 12.3.2, and 12.3.3 to prove the Anova Equality:

S S TO = S S E + S SR.



Chapter 13

Resampling Methods

Computers have changed the face of statistics. Their quick computational speed and flawless

accuracy, coupled with large data sets acquired by the researcher, make them indispensable for

many modern analyses. In particular, resampling methods (due in large part to Bradley Efron)

have gained prominence in the modern statistician’s repertoire. We first look at a classical

problem to get some insight why.

I have seen Statistical Computing with R by Rizzo [71] and I recommend it to those looking

for a more advanced treatment with additional topics. I believe that Monte Carlo Statistical

Methods by Robert and Casella [72] has a new edition that integrates R into the narrative.

What do I want them to know?

• basic philosophy of resampling and why it is important

• resampling for standard errors and confidence intervals

• resampling for hypothesis tests (permutation tests)

13.1 Introduction

Classical question Given a population of interest, how may we effectively learn some of its

salient features, e.g., the population’s mean? One way is through representative random

sampling. Given a random sample, we summarize the information contained therein by

calculating a reasonable statistic, e.g., the sample mean. Given a value of a statistic, how

do we know whether that value is significantly different from that which was expected?

We don’t; we look at the sampling distribution of the statistic, and we try to make prob-

abilistic assertions based on a confidence level or other consideration. For example, we

may find ourselves saying things like, "With 95% confidence, the true population mean

is greater than zero."

Problem Unfortunately, in most cases the sampling distribution is unknown. Thus, in the

past, in efforts to say something useful, statisticians have been obligated to place some

restrictive assumptions on the underlying population. For example, if we suppose that

the population has a normal distribution, then we can say that the distribution of X is

normal, too, with the same mean (and a smaller standard deviation). It is then easy to

draw conclusions, make inferences, and go on about our business.

297
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Alternative We don’t know what the underlying population distributions is, so let us estimate

it, just like we would with any other parameter. The statistic we use is the empirical CDF,

that is, the function that places mass 1/n at each of the observed data points x1, . . . , xn
(see Section 5.5). As the sample size increases, we would expect the approximation to

get better and better (with i.i.d. observations, it does, and there is a wonderful theorem

by Glivenko and Cantelli that proves it). And now that we have an (estimated) popula-

tion distribution, it is easy to find the sampling distribution of any statistic we like: just

sample from the empirical CDF many, many times, calculate the statistic each time, and

make a histogram. Done! Of course, the number of samples needed to get a represen-

tative histogram is prohibitively large. . . human beings are simply too slow (and clumsy)

to do this tedious procedure.

Fortunately, computers are very skilled at doing simple, repetitive tasks very quickly and

accurately. So we employ them to give us a reasonable idea about the sampling dis-

tribution of our statistic, and we use the generated sampling distribution to guide our

inferences and draw our conclusions. If we would like to have a better approximation for

the sampling distribution (within the confines of the information contained in the original

sample), we merely tell the computer to sample more. In this (restricted) sense, we are

limited only by our current computational speed and pocket book.

In short, here are some of the benefits that the advent of resampling methods has given us:

Fewer assumptions. We are no longer required to assume the population is normal or the

sample size is large (though, as before, the larger the sample the better).

Greater accuracy. Many classical methods are based on rough upper bounds or Taylor expan-

sions. The bootstrap procedures can be iterated long enough to give results accurate to

several decimal places, often beating classical approximations.

Generality. Resampling methods are easy to understand and apply to a large class of seem-

ingly unrelated procedures. One no longer needs to memorize long complicated formulas

and algorithms.

Remark 13.1. Due to the special structure of the empirical CDF, to get an i.i.d. sample we just

need to take a random sample of size n, with replacement, from the observed data x1, . . . , xn.

Repeats are expected and acceptable. Since we already sampled to get the original data, the

term resampling is used to describe the procedure.

General bootstrap procedure. The above discussion leads us to the following general pro-

cedure to approximate the sampling distribution of a statistic S = S (x1, x2, . . . , xn) based on an

observed simple random sample x = (x1, x2, . . . , xn) of size n:

1. Create many many samples x∗1, . . . , x
∗
M, called resamples, by sampling with replacement

from the data.

2. Calculate the statistic of interest S (x∗1), . . . , S (x
∗
M
) for each resample. The distribution of

the resample statistics is called a bootstrap distribution.

3. The bootstrap distribution gives information about the sampling distribution of the orig-

inal statistic S . In particular, the bootstrap distribution gives us some idea about the

center, spread, and shape of the sampling distribution of S .
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13.2 Bootstrap Standard Errors

Since the bootstrap distribution gives us information about a statistic’s sampling distribution,

we can use the bootstrap distribution to estimate properties of the statistic. We will illustrate

the bootstrap procedure in the special case that the statistic S is a standard error.

Example 13.2. Standard error of the mean. In this example we illustrate the bootstrap by

estimating the standard error of the sample meanand we will do it in the special case that the

underlying population is norm(mean = 3, sd = 1).

Of course, we do not really need a bootstrap distribution here because from Section 8.2 we

know that X ∼ norm(mean = 3, sd = 1/
√
n), but we proceed anyway to investigate how the

bootstrap performs when we know what the answer should be ahead of time.

We will take a random sample of size n = 25 from the population. Then we will resample

the data 1000 times to get 1000 resamples of size 25. We will calculate the sample mean of

each of the resamples, and will study the data distribution of the 1000 values of x.

> srs <- rnorm(25, mean = 3)

> resamps <- replicate(1000, sample(srs, 25, TRUE), simplify = FALSE)

> xbarstar <- sapply(resamps, mean, simplify = TRUE)

A histogram of the 1000 values of x is shown in Figure 13.2.1, and was produced by the

following code.

> hist(xbarstar, breaks = 40, prob = TRUE)

> curve(dnorm(x, 3, 0.2), add = TRUE) # overlay true normal density

We have overlain what we know to be the true sampling distribution of X, namely, a

norm(mean = 3, sd = 1/
√
25) distribution. The histogram matches the true sampling distribu-

tion pretty well with respect to shape and spread. . . but notice how the histogram is off-center

a little bit. This is not a coincidence – in fact, it can be shown that the mean of the bootstrap

distribution is exactly the mean of the original sample, that is, the value of the statistic that we

originally observed. Let us calculate the mean of the bootstrap distribution and compare it to

the mean of the original sample:

> mean(xbarstar)

[1] 2.711477

> mean(srs)

[1] 2.712087

> mean(xbarstar) - mean(srs)

[1] -0.0006096438

Notice how close the two values are. The difference between them is an estimate of how

biased the original statistic is, the so-called bootstrap estimate of bias. Since the estimate is so

small we would expect our original statistic (X) to have small bias, but this is no surprise to us

because we already knew from Section 8.1.1 that X is an unbiased estimator of the population

mean.

Now back to our original problem, we would like to estimate the standard error of X. Look-

ing at the histogram, we see that the spread of the bootstrap distribution is similar to the spread

of the sampling distribution. Therefore, it stands to reason that we could estimate the standard

error of X with the sample standard deviation of the resample statistics. Let us try and see.
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Histogram of xbarstar
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Figure 13.2.1: Bootstrapping the standard error of the mean, simulated data

The original data were 25 observations generated from a norm(mean = 3, sd = 1) distribution. We next

resampled to get 1000 resamples, each of size 25, and calculated the sample mean for each resample. A

histogram of the 1000 values of x is shown above. Also shown (with a solid line) is the true sampling

distribution of X, which is a norm(mean = 3, sd = 0.2) distribution. Note that the histogram is centered

at the sample mean of the original data, while the true sampling distribution is centered at the true value

of µ = 3. The shape and spread of the histogram is similar to the shape and spread of the true sampling

distribution.
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> sd(xbarstar)

[1] 0.1390366

We know from theory that the true standard error is 1/
√
25 = 0.20. Our bootstrap estimate

is not very far from the theoretical value.

Remark 13.3. What would happen if we take more resamples? Instead of 1000 resamples, we

could increase to, say, 2000, 3000, or even 4000. . . would it help? The answer is both yes and

no. Keep in mind that with resampling methods there are two sources of randomness: that

from the original sample, and that from the subsequent resampling procedure. An increased

number of resamples would reduce the variation due to the second part, but would do nothing

to reduce the variation due to the first part. We only took an original sample of size n = 25, and

resampling more and more would never generate more information about the population than

was already there. In this sense, the statistician is limited by the information contained in the

original sample.

Example 13.4. Standard error of the median. We look at one where we do not know the

answer ahead of time. This example uses the rivers data set. Recall the stemplot on page

on page 41 that we made for these data which shows them to be markedly right-skewed, so a

natural estimate of center would be the sample median. Unfortunately, its sampling distribution

falls out of our reach. We use the bootstrap to help us with this problem, and the modifications

to the last example are trivial.

> resamps <- replicate(1000, sample(rivers, 141, TRUE), simplify = FALSE)

> medstar <- sapply(resamps, median, simplify = TRUE)

> sd(medstar)

[1] 27.21154

The graph is shown in Figure 13.2.2, and was produced by the following code.

> hist(medstar, breaks = 40, prob = TRUE)

> median(rivers)

[1] 425

> mean(medstar)

[1] 427.88

> mean(medstar) - median(rivers)

[1] 2.88

Example 13.5. The boot package in R. It turns out that there are many bootstrap procedures

and commands already built into base R, in the boot package. Further, inside the boot package

there is even a function called boot. The basic syntax is of the form:

boot(data, statistic , R)
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Figure 13.2.2: Bootstrapping the standard error of the median for the rivers data

Here, data is a vector (or matrix) containing the data to be resampled, statistic is a

defined function, of two arguments, that tells which statistic should be computed, and the pa-

rameter R specifies how many resamples should be taken.

For the standard error of the mean (Example 13.2):

> library(boot)

> mean_fun <- function(x, indices) mean(x[indices])

> boot(data = srs, statistic = mean_fun, R = 1000)

ORDINARY NONPARAMETRIC BOOTSTRAP

Call:

boot(data = srs, statistic = mean_fun, R = 1000)

Bootstrap Statistics :

original bias std. error

t1* 2.712087 -0.007877409 0.1391195

For the standard error of the median (Example 13.4):

> median_fun <- function(x, indices) median(x[indices])

> boot(data = rivers, statistic = median_fun, R = 1000)

ORDINARY NONPARAMETRIC BOOTSTRAP
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Call:

boot(data = rivers, statistic = median_fun, R = 1000)

Bootstrap Statistics :

original bias std. error

t1* 425 2.456 25.63723

We notice that the output from both methods of estimating the standard errors produced

similar results. In fact, the boot procedure is to be preferred since it invisibly returns much

more information (which we will use later) than our naive script and it is much quicker in its

computations.

Remark 13.6. Some things to keep in mind about the bootstrap:

• For many statistics, the bootstrap distribution closely resembles the sampling distribution

with respect to spread and shape. However, the bootstrap will not have the same center

as the true sampling distribution. While the sampling distribution is centered at the pop-

ulation mean (plus any bias), the bootstrap distribution is centered at the original value

of the statistic (plus any bias). The boot function gives an empirical estimate of the bias

of the statistic as part of its output.

• We tried to estimate the standard error, but we could have (in principle) tried to esti-

mate something else. Note from the previous remark, however, that it would be useless

to estimate the population mean µ using the bootstrap since the mean of the bootstrap

distribution is the observed x.

• You don’t get something from nothing. We have seen that we can take a random sample

from a population and use bootstrap methods to get a very good idea about standard

errors, bias, and the like. However, one must not get lured into believing that by doing

some random resampling somehow one gets more information about the parameters than

that which was contained in the original sample. Indeed, there is some uncertainty about

the parameter due to the randomness of the original sample, and there is even more

uncertainty introduced by resampling. One should think of the bootstrap as just another

estimation method, nothing more, nothing less.

13.3 Bootstrap Confidence Intervals

13.3.1 Percentile Confidence Intervals

As a first try, we want to obtain a 95% confidence interval for a parameter. Typically the

statistic we use to estimate the parameter is centered at (or at least close by) the parameter; in

such cases a 95% confidence interval for the parameter is nothing more than a 95% confidence

interval for the statistic. And to find a 95% confidence interval for the statistic we need only go

to its sampling distribution to find an interval that contains 95% of the area. (The most popular

choice is the equal-tailed interval with 2.5% in each tail.)

This is incredibly easy to accomplish with the bootstrap. We need only to take a bunch of

bootstrap resamples, order them, and choose the α/2th and (1 − α)th percentiles. There is a

function boot.ci in R already created to do just this. Note that in order to use the function
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boot.ci we must first run the boot function and save the output in a variable, for example,

data.boot. We then plug data.boot into the function boot.ci.

Example 13.7. Percentile interval for the expected value of the median. Wee will try the

naive approach where we generate the resamples and calculate the percentile interval by hand.

> btsamps <- replicate(2000, sample(stack.loss, 21, TRUE),

+ simplify = FALSE)

> thetast <- sapply(btsamps, median, simplify = TRUE)

> mean(thetast)

[1] 14.794

> median(stack.loss)

[1] 15

> quantile(thetast, c(0.025, 0.975))

2.5% 97.5%

12 18

Example 13.8. Confidence interval for expected value of the median, 2nd try. Now we will

do it the right way with the boot function.

> library(boot)

> med_fun <- function(x, ind) median(x[ind])

> med_boot <- boot(stack.loss, med_fun, R = 2000)

> boot.ci(med_boot, type = c("perc", "norm", "bca"))

BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS

Based on 2000 bootstrap replicates

CALL :

boot.ci(boot.out = med_boot, type = c("perc", "norm", "bca"))

Intervals :

Level Normal Percentile BCa

95% (12.11, 18.34 ) (12.00, 18.00 ) (11.00, 18.00 )

Calculations and Intervals on Original Scale

13.3.2 Student’s t intervals (“normal intervals”)

The idea is to use confidence intervals that we already know and let the bootstrap help us when

we get into trouble. We know that a 100(1−α)% confidence interval for the mean of a SRS (n)

from a normal distribution is

X ± tα/2(df = n − 1) S
√
n
, (13.3.1)

where tα/2(df = n − 1) is the appropriate critical value from Student’s t distribution, and we

remember that an estimate for the standard error of X is S/
√
n. Of course, the estimate for the

standard error will change when the underlying population distribution is not normal, or when
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we use a statistic more complicated than X. In those situations the bootstrap will give us quite

reasonable estimates for the standard error. And as long as the sampling distribution of our

statistic is approximately bell-shaped with small bias, the interval

statistic ± tα/2(df = n − 1) ∗ SE(statistic) (13.3.2)

will have approximately 100(1 − α)% confidence of containing IE(statistic).

Example 13.9. We will use the t-interval method to find the bootstrap CI for the median. We

have looked at the bootstrap distribution; it appears to be symmetric and approximately mound

shaped. Further, we may check that the bias is approximately 40, which on the scale of these

data is practically negligible. Thus, we may consider looking at the t-intervals. Note that, since

our sample is so large, instead of t-intervals we will essentially be using z-intervals.

Please see the handout, “Bootstrapping Confidence Intervals for the Median, 3rd try.”

We see that, considering the scale of the data, the confidence intervals compare with each

other quite well.

Remark 13.10. We have seen two methods for bootstrapping confidence intervals for a statistic.

Which method should we use? If the bias of the bootstrap distribution is small and if the

distribution is close to normal, then the percentile and t-intervals will closely agree. If the

intervals are noticeably different, then it should be considered evidence that the normality and

bias conditions are not met. In this case, neither interval should be used.

• BCa: bias-corrected and accelerated

◦ transformation invariant

◦ more correct and accurate

◦ not monotone in coverage level?

• t - intervals

◦ more natural

◦ numerically unstable

• Can do things like transform scales, compute confidence intervals, and then transform

back.

• Studentized bootstrap confidence intervals where is the Studentized version of is the order

statistic of the simulation

13.4 Resampling in Hypothesis Tests

The classical two-sample problem can be stated as follows: given two groups of interest, we

would like to know whether these two groups are significantly different from one another or

whether the groups are reasonably similar. The standard way to decide is to

1. Go collect some information from the two groups and calculate an associated statistic,

for example, X1 − X2.
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2. Suppose that there is no difference in the groups, and find the distribution of the statistic

in 1.

3. Locate the observed value of the statistic with respect to the distribution found in 2. A

value in the main body of the distribution is not spectacular, it could reasonably have

occurred by chance. A value in the tail of the distribution is unlikely, and hence provides

evidence against the null hypothesis that the population distributions are the same.

Of course, we usually compute a p-value, defined to be the probability of the observed value

of the statistic or more extreme when the null hypothesis is true. Small p-values are evidence

against the null hypothesis. It is not immediately obvious how to use resampling methods here,

so we discuss an example.

Example 13.11. A study concerned differing dosages of the antiretroviral drug AZT. The com-

mon dosage is 300mg daily. Higher doses cause more side affects, but are they significantly

higher? We examine for a 600mg dose. The data are as follows: We compare the scores from

the two groups by computing the difference in their sample means. The 300mg data were

entered in x1 and the 600mg data were entered into x2. The observed difference was

300 mg 284 279 289 292 287 295 285 279 306 298

600 mg 298 307 297 279 291 335 299 300 306 291

The average amounts can be found:

> mean(x1)

[1] 289.4

> mean(x2)

[1] 300.3

with an observed difference of mean(x2) - mean(x1) = 10.9. As expected, the 600

mg measurements seem to have a higher average, and we might be interested in trying to

decide if the average amounts are significantly different. The null hypothesis should be that

there is no difference in the amounts, that is, the groups are more or less the same. If the null

hypothesis were true, then the two groups would indeed be the same, or just one big group. In

that case, the observed difference in the sample means just reflects the random assignment into

the arbitrary x1 and x2 categories. It is now clear how we may resample, consistent with the

null hypothesis.

Procedure:

1. Randomly resample 10 scores from the combined scores of x1 and x2, and assign then

to the “x1” group. The rest will then be in the “x2” group. Calculate the difference in

(re)sampled means, and store that value.

2. Repeat this procedure many, many times and draw a histogram of the resampled statistics,

called the permutation distribution. Locate the observed difference 10.9 on the histogram

to get the p-value. If the p-value is small, then we consider that evidence against the

hypothesis that the groups are the same.

Remark 13.12. In calculating the permutation test p-value, the formula is essentially the pro-

portion of resample statistics that are greater than or equal to the observed value. Of course,

this is merely an estimate of the true p-value. As it turns out, an adjustment of +1 to both

the numerator and denominator of the proportion improves the performance of the estimated

p-value, and this adjustment is implemented in the ts.perm function.
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> library(coin)

> oneway_test(len ~ supp, data = ToothGrowth)

Asymptotic 2-Sample Permutation Test

data: len by supp (OJ, VC)

Z = 1.8734, p-value = 0.06102

alternative hypothesis: true mu is not equal to 0

13.4.1 Comparison with the Two Sample t test

We know from Chapter 10 to use the two-sample t-test to tell whether there is an improvement

as a result of taking the intervention class. Note that the t-test assumes normal underlying

populations, with unknown variance, and small sample n = 10. What does the t-test say?

Below is the output.

> t.test(len ~ supp, data = ToothGrowth, alt = "greater", var.equal = TRUE)

Two Sample t-test

data: len by supp

t = 1.9153, df = 58, p-value = 0.03020

alternative hypothesis: true difference in means is greater than 0

95 percent confidence interval:

0.4708204 Inf

sample estimates:

mean in group OJ mean in group VC

20.66333 16.96333

The p-value for the t-test was 0.03, while the permutation test p-value was 0.061. Note that

there is an underlying normality assumption for the t-test, which isn’t present in the permutation

test. If the normality assumption may be questionable, then the permutation test would be more

reasonable. We see what can happen when using a test in a situation where the assumptions

are not met: smaller p-values. In situations where the normality assumptions are not met,

for example, small sample scenarios, the permutation test is to be preferred. In particular, if

accuracy is very important then we should use the permutation test.

Remark 13.13. Here are some things about permutation tests to keep in mind.

• While the permutation test does not require normality of the populations (as contrasted

with the t-test), nevertheless it still requires that the two groups are exchangeable; see

Section 7.5. In particular, this means that they must be identically distributed under the

null hypothesis. They must have not only the same means, but they must also have the

same spread, shape, and everything else. This assumption may or may not be true in

a given example, but it will rarely cause the t-test to outperform the permutation test,

because even if the sample standard deviations are markedly different it does not mean

that the population standard deviations are different. In many situations the permutation

test will also carry over to the t-test.

• If the distribution of the groups is close to normal, then the t-test p-value and the boot-

strap p-value will be approximately equal. If they differ markedly, then this should be

considered evidence that the normality assumptions do not hold.
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• The generality of the permutation test is such that one can use all kinds of statistics to

compare the two groups. One could compare the difference in variances or the difference

in (just about anything). Alternatively, one could compare the ratio of sample means,

X1/X2. Of course, under the null hypothesis this last quantity should be near 1.

• Just as with the bootstrap, the answer we get is subject to variability due to the inherent

randomness of resampling from the data. We can make the variability as small as we like

by taking sufficiently many resamples. How many? If the conclusion is very important

(that is, if lots of money is at stake), then take thousands. For point estimation problems

typically, R = 1000 resamples, or so, is enough. In general, if the true p-value is p then

the standard error of the estimated p-value is
√
p(1 − p)/R. You can choose R to get

whatever accuracy desired.

• Other possible testing designs:

◦ Matched Pairs Designs.

◦ Relationship between two variables.
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Chapter Exercises
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Chapter 14

Categorical Data Analysis

This chapter is still under substantial revision. At any time you can preview any released drafts

with the development version of the IPSUR package which is available from R-Forge:

> install.packages("IPSUR", repos = "http://R-Forge.R-project.org")

> library(IPSUR)

> read(IPSUR)
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Chapter 15

Nonparametric Statistics

This chapter is still under substantial revision. At any time you can preview any released drafts

with the development version of the IPSUR package which is available from R-Forge:

> install.packages("IPSUR", repos = "http://R-Forge.R-project.org")

> library(IPSUR)

> read(IPSUR)
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Chapter 16

Time Series

This chapter is still under substantial revision. At any time you can preview any released drafts

with the development version of the IPSUR package which is available from R-Forge:

> install.packages("IPSUR", repos = "http://R-Forge.R-project.org")

> library(IPSUR)

> read(IPSUR)
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Appendix A

R Session Information

If you ever write the R help mailing list with a question, then you should include your session

information in the email; it makes the reader’s job easier and is requested by the Posting Guide.

Here is how to do that, and below is what the output looks like.

> sessionInfo()

R version 2.11.1 (2010-05-31)

x86_64-pc-linux-gnu

locale:

[1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C

[3] LC_TIME=en_US.UTF-8 LC_COLLATE=en_US.UTF-8

[5] LC_MONETARY=C LC_MESSAGES=en_US.UTF-8

[7] LC_PAPER=en_US.UTF-8 LC_NAME=C

[9] LC_ADDRESS=C LC_TELEPHONE=C

[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C

attached base packages:

[1] splines grid stats4 tcltk stats graphics grDevices

[8] utils datasets methods base

other attached packages:

[1] coin_1.0-12 modeltools_0.2-16

[3] boot_1.2-42 scatterplot3d_0.3-30

[5] lmtest_0.9-26 zoo_1.6-4

[7] reshape_0.8.3 plyr_1.0.3

[9] Hmisc_3.8-2 HH_2.1-32

[11] leaps_2.9 multcomp_1.1-7

[13] survival_2.35-8 TeachingDemos_2.6

[15] mvtnorm_0.9-92 distrEx_2.2

[17] actuar_1.1-0 evd_2.2-4

[19] distr_2.2.3 sfsmisc_1.0-11

[21] startupmsg_0.7 combinat_0.0-7

[23] prob_0.9-2 lattice_0.18-8

[25] e1071_1.5-24 class_7.3-2

[27] qcc_2.0.1 aplpack_1.2.3

317



318 APPENDIX A. R SESSION INFORMATION

[29] RcmdrPlugin.IPSUR_0.1-7 Rcmdr_1.5-6

[31] car_1.2-16

loaded via a namespace (and not attached):

[1] cluster_1.13.1 tools_2.11.1



Appendix B

GNU Free Documentation License

Version 1.3, 3 November 2008

Copyright (C) 2000, 2001, 2002, 2007, 2008 Free Software Foundation, Inc.

http://fsf.org/

Everyone is permitted to copy and distribute verbatim copies of this license document, but

changing it is not allowed.

0. PREAMBLE

The purpose of this License is to make a manual, textbook, or other functional and useful doc-

ument "free" in the sense of freedom: to assure everyone the effective freedom to copy and

redistribute it, with or without modifying it, either commercially or noncommercially. Secon-

darily, this License preserves for the author and publisher a way to get credit for their work,

while not being considered responsible for modifications made by others.

This License is a kind of "copyleft", which means that derivative works of the document

must themselves be free in the same sense. It complements the GNU General Public License,

which is a copyleft license designed for free software.

We have designed this License in order to use it for manuals for free software, because free

software needs free documentation: a free program should come with manuals providing the

same freedoms that the software does. But this License is not limited to software manuals; it

can be used for any textual work, regardless of subject matter or whether it is published as a

printed book. We recommend this License principally for works whose purpose is instruction

or reference.

1. APPLICABILITY AND DEFINITIONS

This License applies to any manual or other work, in any medium, that contains a notice placed

by the copyright holder saying it can be distributed under the terms of this License. Such a

notice grants a world-wide, royalty-free license, unlimited in duration, to use that work under

the conditions stated herein. The "Document", below, refers to any such manual or work. Any

member of the public is a licensee, and is addressed as "you". You accept the license if you

copy, modify or distribute the work in a way requiring permission under copyright law.
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A "Modified Version" of the Document means any work containing the Document or a por-

tion of it, either copied verbatim, or with modifications and/or translated into another language.

A "Secondary Section" is a named appendix or a front-matter section of the Document

that deals exclusively with the relationship of the publishers or authors of the Document to the

Document’s overall subject (or to related matters) and contains nothing that could fall directly

within that overall subject. (Thus, if the Document is in part a textbook of mathematics, a

Secondary Section may not explain any mathematics.) The relationship could be a matter of

historical connection with the subject or with related matters, or of legal, commercial, philo-

sophical, ethical or political position regarding them.

The "Invariant Sections" are certain Secondary Sections whose titles are designated, as

being those of Invariant Sections, in the notice that says that the Document is released under this

License. If a section does not fit the above definition of Secondary then it is not allowed to be

designated as Invariant. The Document may contain zero Invariant Sections. If the Document

does not identify any Invariant Sections then there are none.

The "Cover Texts" are certain short passages of text that are listed, as Front-Cover Texts or

Back-Cover Texts, in the notice that says that the Document is released under this License. A

Front-Cover Text may be at most 5 words, and a Back-Cover Text may be at most 25 words.

A "Transparent" copy of the Document means a machine-readable copy, represented in a

format whose specification is available to the general public, that is suitable for revising the doc-

ument straightforwardly with generic text editors or (for images composed of pixels) generic

paint programs or (for drawings) some widely available drawing editor, and that is suitable for

input to text formatters or for automatic translation to a variety of formats suitable for input

to text formatters. A copy made in an otherwise Transparent file format whose markup, or ab-

sence of markup, has been arranged to thwart or discourage subsequent modification by readers

is not Transparent. An image format is not Transparent if used for any substantial amount of

text. A copy that is not "Transparent" is called "Opaque".

Examples of suitable formats for Transparent copies include plain ASCII without markup,

Texinfo input format, LATEX input format, SGML or XML using a publicly available DTD,

and standard-conforming simple HTML, PostScript or PDF designed for human modification.

Examples of transparent image formats include PNG, XCF and JPG. Opaque formats include

proprietary formats that can be read and edited only by proprietary word processors, SGML or

XML for which the DTD and/or processing tools are not generally available, and the machine-

generated HTML, PostScript or PDF produced by some word processors for output purposes

only.

The "Title Page" means, for a printed book, the title page itself, plus such following pages

as are needed to hold, legibly, the material this License requires to appear in the title page. For

works in formats which do not have any title page as such, "Title Page" means the text near the

most prominent appearance of the work’s title, preceding the beginning of the body of the text.

The "publisher" means any person or entity that distributes copies of the Document to the

public.

A section "Entitled XYZ" means a named subunit of the Document whose title either is

precisely XYZ or contains XYZ in parentheses following text that translates XYZ in another

language. (Here XYZ stands for a specific section name mentioned below, such as "Acknowl-

edgements", "Dedications", "Endorsements", or "History".) To "Preserve the Title" of such a

section when you modify the Document means that it remains a section "Entitled XYZ" ac-

cording to this definition.

The Document may include Warranty Disclaimers next to the notice which states that this

License applies to the Document. These Warranty Disclaimers are considered to be included by
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reference in this License, but only as regards disclaiming warranties: any other implication that

these Warranty Disclaimers may have is void and has no effect on the meaning of this License.

2. VERBATIM COPYING

You may copy and distribute the Document in any medium, either commercially or noncom-

mercially, provided that this License, the copyright notices, and the license notice saying this

License applies to the Document are reproduced in all copies, and that you add no other con-

ditions whatsoever to those of this License. You may not use technical measures to obstruct or

control the reading or further copying of the copies you make or distribute. However, you may

accept compensation in exchange for copies. If you distribute a large enough number of copies

you must also follow the conditions in section 3.

You may also lend copies, under the same conditions stated above, and you may publicly

display copies.

3. COPYING IN QUANTITY

If you publish printed copies (or copies in media that commonly have printed covers) of the

Document, numbering more than 100, and the Document’s license notice requires Cover Texts,

you must enclose the copies in covers that carry, clearly and legibly, all these Cover Texts:

Front-Cover Texts on the front cover, and Back-Cover Texts on the back cover. Both covers

must also clearly and legibly identify you as the publisher of these copies. The front cover

must present the full title with all words of the title equally prominent and visible. You may

add other material on the covers in addition. Copying with changes limited to the covers, as

long as they preserve the title of the Document and satisfy these conditions, can be treated as

verbatim copying in other respects.

If the required texts for either cover are too voluminous to fit legibly, you should put the first

ones listed (as many as fit reasonably) on the actual cover, and continue the rest onto adjacent

pages.

If you publish or distribute Opaque copies of the Document numbering more than 100,

you must either include a machine-readable Transparent copy along with each Opaque copy,

or state in or with each Opaque copy a computer-network location from which the general

network-using public has access to download using public-standard network protocols a com-

plete Transparent copy of the Document, free of added material. If you use the latter option,

you must take reasonably prudent steps, when you begin distribution of Opaque copies in quan-

tity, to ensure that this Transparent copy will remain thus accessible at the stated location until

at least one year after the last time you distribute an Opaque copy (directly or through your

agents or retailers) of that edition to the public.

It is requested, but not required, that you contact the authors of the Document well before

redistributing any large number of copies, to give them a chance to provide you with an updated

version of the Document.

4. MODIFICATIONS

You may copy and distribute a Modified Version of the Document under the conditions of

sections 2 and 3 above, provided that you release the Modified Version under precisely this
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License, with the Modified Version filling the role of the Document, thus licensing distribution

and modification of the Modified Version to whoever possesses a copy of it. In addition, you

must do these things in the Modified Version:

A. Use in the Title Page (and on the covers, if any) a title distinct from that of the Document,

and from those of previous versions (which should, if there were any, be listed in the History

section of the Document). You may use the same title as a previous version if the original

publisher of that version gives permission.

B. List on the Title Page, as authors, one or more persons or entities responsible for author-

ship of the modifications in the Modified Version, together with at least five of the principal

authors of the Document (all of its principal authors, if it has fewer than five), unless they

release you from this requirement.

C. State on the Title page the name of the publisher of the Modified Version, as the pub-

lisher.

D. Preserve all the copyright notices of the Document.

E. Add an appropriate copyright notice for your modifications adjacent to the other copy-

right notices.

F. Include, immediately after the copyright notices, a license notice giving the public per-

mission to use the Modified Version under the terms of this License, in the form shown in the

Addendum below.

G. Preserve in that license notice the full lists of Invariant Sections and required Cover Texts

given in the Document’s license notice.

H. Include an unaltered copy of this License.

I. Preserve the section Entitled "History", Preserve its Title, and add to it an item stating at

least the title, year, new authors, and publisher of the Modified Version as given on the Title

Page. If there is no section Entitled "History" in the Document, create one stating the title, year,

authors, and publisher of the Document as given on its Title Page, then add an item describing

the Modified Version as stated in the previous sentence.

J. Preserve the network location, if any, given in the Document for public access to a Trans-

parent copy of the Document, and likewise the network locations given in the Document for

previous versions it was based on. These may be placed in the "History" section. You may omit

a network location for a work that was published at least four years before the Document itself,

or if the original publisher of the version it refers to gives permission.

K. For any section Entitled "Acknowledgements" or "Dedications", Preserve the Title of

the section, and preserve in the section all the substance and tone of each of the contributor

acknowledgements and/or dedications given therein.

L. Preserve all the Invariant Sections of the Document, unaltered in their text and in their

titles. Section numbers or the equivalent are not considered part of the section titles.

M. Delete any section Entitled "Endorsements". Such a section may not be included in the

Modified Version.

N. Do not retitle any existing section to be Entitled "Endorsements" or to conflict in title

with any Invariant Section.

O. Preserve any Warranty Disclaimers.

If the Modified Version includes new front-matter sections or appendices that qualify as

Secondary Sections and contain no material copied from the Document, you may at your option

designate some or all of these sections as invariant. To do this, add their titles to the list of

Invariant Sections in the Modified Version’s license notice. These titles must be distinct from

any other section titles.
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You may add a section Entitled "Endorsements", provided it contains nothing but endorse-

ments of your Modified Version by various parties–for example, statements of peer review or

that the text has been approved by an organization as the authoritative definition of a standard.

You may add a passage of up to five words as a Front-Cover Text, and a passage of up to 25

words as a Back-Cover Text, to the end of the list of Cover Texts in the Modified Version. Only

one passage of Front-Cover Text and one of Back-Cover Text may be added by (or through

arrangements made by) any one entity. If the Document already includes a cover text for the

same cover, previously added by you or by arrangement made by the same entity you are acting

on behalf of, you may not add another; but you may replace the old one, on explicit permission

from the previous publisher that added the old one.

The author(s) and publisher(s) of the Document do not by this License give permission to

use their names for publicity for or to assert or imply endorsement of any Modified Version.

5. COMBINING DOCUMENTS

You may combine the Document with other documents released under this License, under

the terms defined in section 4 above for modified versions, provided that you include in the

combination all of the Invariant Sections of all of the original documents, unmodified, and list

them all as Invariant Sections of your combined work in its license notice, and that you preserve

all their Warranty Disclaimers.

The combined work need only contain one copy of this License, and multiple identical

Invariant Sections may be replaced with a single copy. If there are multiple Invariant Sections

with the same name but different contents, make the title of each such section unique by adding

at the end of it, in parentheses, the name of the original author or publisher of that section if

known, or else a unique number. Make the same adjustment to the section titles in the list of

Invariant Sections in the license notice of the combined work.

In the combination, you must combine any sections Entitled "History" in the various origi-

nal documents, forming one section Entitled "History"; likewise combine any sections Entitled

"Acknowledgements", and any sections Entitled "Dedications". You must delete all sections

Entitled "Endorsements".

6. COLLECTIONS OF DOCUMENTS

You may make a collection consisting of the Document and other documents released under

this License, and replace the individual copies of this License in the various documents with a

single copy that is included in the collection, provided that you follow the rules of this License

for verbatim copying of each of the documents in all other respects.

You may extract a single document from such a collection, and distribute it individually

under this License, provided you insert a copy of this License into the extracted document, and

follow this License in all other respects regarding verbatim copying of that document.

7. AGGREGATIONWITH INDEPENDENTWORKS

A compilation of the Document or its derivatives with other separate and independent docu-

ments or works, in or on a volume of a storage or distribution medium, is called an "aggregate"
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if the copyright resulting from the compilation is not used to limit the legal rights of the com-

pilation’s users beyond what the individual works permit. When the Document is included in

an aggregate, this License does not apply to the other works in the aggregate which are not

themselves derivative works of the Document.

If the Cover Text requirement of section 3 is applicable to these copies of the Document,

then if the Document is less than one half of the entire aggregate, the Document’s Cover Texts

may be placed on covers that bracket the Document within the aggregate, or the electronic

equivalent of covers if the Document is in electronic form. Otherwise they must appear on

printed covers that bracket the whole aggregate.

8. TRANSLATION

Translation is considered a kind of modification, so you may distribute translations of the Doc-

ument under the terms of section 4. Replacing Invariant Sections with translations requires

special permission from their copyright holders, but you may include translations of some or

all Invariant Sections in addition to the original versions of these Invariant Sections. You may

include a translation of this License, and all the license notices in the Document, and any War-

ranty Disclaimers, provided that you also include the original English version of this License

and the original versions of those notices and disclaimers. In case of a disagreement between

the translation and the original version of this License or a notice or disclaimer, the original

version will prevail.

If a section in the Document is Entitled "Acknowledgements", "Dedications", or "History",

the requirement (section 4) to Preserve its Title (section 1) will typically require changing the

actual title.

9. TERMINATION

You may not copy, modify, sublicense, or distribute the Document except as expressly provided

under this License. Any attempt otherwise to copy, modify, sublicense, or distribute it is void,

and will automatically terminate your rights under this License.

However, if you cease all violation of this License, then your license from a particular

copyright holder is reinstated (a) provisionally, unless and until the copyright holder explicitly

and finally terminates your license, and (b) permanently, if the copyright holder fails to notify

you of the violation by some reasonable means prior to 60 days after the cessation.

Moreover, your license from a particular copyright holder is reinstated permanently if the

copyright holder notifies you of the violation by some reasonable means, this is the first time

you have received notice of violation of this License (for any work) from that copyright holder,

and you cure the violation prior to 30 days after your receipt of the notice.

Termination of your rights under this section does not terminate the licenses of parties who

have received copies or rights from you under this License. If your rights have been terminated

and not permanently reinstated, receipt of a copy of some or all of the same material does not

give you any rights to use it.
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10. FUTURE REVISIONS OF THIS LICENSE

The Free Software Foundationmay publish new, revised versions of the GNU Free Documenta-

tion License from time to time. Such new versions will be similar in spirit to the present version,

but may differ in detail to address new problems or concerns. See http://www.gnu.org/copyleft/.

Each version of the License is given a distinguishing version number. If the Document

specifies that a particular numbered version of this License "or any later version" applies to it,

you have the option of following the terms and conditions either of that specified version or of

any later version that has been published (not as a draft) by the Free Software Foundation. If

the Document does not specify a version number of this License, you may choose any version

ever published (not as a draft) by the Free Software Foundation. If the Document specifies

that a proxy can decide which future versions of this License can be used, that proxy’s public

statement of acceptance of a version permanently authorizes you to choose that version for the

Document.

11. RELICENSING

"MassiveMultiauthor Collaboration Site" (or "MMC Site") means any World WideWeb server

that publishes copyrightable works and also provides prominent facilities for anybody to edit

those works. A public wiki that anybody can edit is an example of such a server. A "Massive

Multiauthor Collaboration" (or "MMC") contained in the site means any set of copyrightable

works thus published on the MMC site.

"CC-BY-SA" means the Creative Commons Attribution-Share Alike 3.0 license published

by Creative Commons Corporation, a not-for-profit corporation with a principal place of busi-

ness in San Francisco, California, as well as future copyleft versions of that license published

by that same organization.

"Incorporate" means to publish or republish a Document, in whole or in part, as part of

another Document.

An MMC is "eligible for relicensing" if it is licensed under this License, and if all works

that were first published under this License somewhere other than this MMC, and subsequently

incorporated in whole or in part into the MMC, (1) had no cover texts or invariant sections, and

(2) were thus incorporated prior to November 1, 2008.

The operator of an MMC Site may republish an MMC contained in the site under CC-

BY-SA on the same site at any time before August 1, 2009, provided the MMC is eligible for

relicensing.

ADDENDUM: How to use this License for your documents

To use this License in a document you have written, include a copy of the License in the

document and put the following copyright and license notices just after the title page:

Copyright (c) YEAR YOUR NAME. Permission is granted to copy, distribute

and/or modify this document under the terms of the GNU Free Documentation

License, Version 1.3 or any later version published by the Free Software Founda-

tion; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts.

A copy of the license is included in the section entitled "GNU Free Documentation

License".
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If you have Invariant Sections, Front-Cover Texts and Back-Cover Texts, replace the "with...Texts."

line with this:

with the Invariant Sections being LIST THEIR TITLES, with the Front-Cover

Texts being LIST, and with the Back-Cover Texts being LIST.

If you have Invariant Sections without Cover Texts, or some other combination of the three,

merge those two alternatives to suit the situation.

If your document contains nontrivial examples of program code, we recommend releasing

these examples in parallel under your choice of free software license, such as the GNU General

Public License, to permit their use in free software.
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Appendix D

Data

This appendix is a reference of sorts regarding some of the data structures a statistician is likely

to encounter. We discuss their salient features and idiosyncrasies.

D.1 Data Structures

D.1.1 Vectors

See the “Vectors and Assignment” section of An Introduction to R . A vector is an ordered

sequence of elements, such as numbers, characters, or logical values, and there may be NA’s

present. We usually make vectors with the assignment operator <-.

> x <- c(3, 5, 9)

Vectors are atomic in the sense that if you try to mix and match elements of different modes

then all elements will be coerced to the most convenient common mode.

> y <- c(3, "5", TRUE)

In the example all elements were coerced to character mode. We can test whether a given

object is a vector with is.vector and can coerce an object (if possible) to a vector with

as.vector.

D.1.2 Matrices and Arrays

See the “Arrays and Matrices” section of An Introduction to R . Loosely speaking, a matrix is a

vector that has been reshaped into rectangular form, and an array is a multidimensional matrix.

Strictly speaking, it is the other way around: an array is a data vector with a dimension attribute

(dim), and a matrix is the special case of an array with only two dimensions. We can construct

a matrix with the matrix function.

> matrix(letters[1:6], nrow = 2, ncol = 3)

[,1] [,2] [,3]

[1,] "a" "c" "e"

[2,] "b" "d" "f"

329



330 APPENDIX D. DATA

Notice the order of the matrix entries, which shows how the matrix is populated by default.

We can change this with the byrow argument:

> matrix(letters[1:6], nrow = 2, ncol = 3, byrow = TRUE)

[,1] [,2] [,3]

[1,] "a" "b" "c"

[2,] "d" "e" "f"

We can test whether a given object is a matrix with is.matrix and can coerce an object (if

possible) to a matrix with as.matrix. As a final example watch what happens when we mix

and match types in the first argument:

> matrix(c(1, "2", NA, FALSE), nrow = 2, ncol = 3)

[,1] [,2] [,3]

[1,] "1" NA "1"

[2,] "2" "FALSE" "2"

Notice how all of the entries were coerced to character for the final result (except NA). Also

notice how the four values were recycled to fill up the six entries of the matrix.

The standard arithmetic operations work element-wise with matrices.

> A <- matrix(1:6, 2, 3)

> B <- matrix(2:7, 2, 3)

> A + B

[,1] [,2] [,3]

[1,] 3 7 11

[2,] 5 9 13

> A * B

[,1] [,2] [,3]

[1,] 2 12 30

[2,] 6 20 42

If you want the standard definition of matrix multiplication then use the %*% function. If

we were to try A %*%B we would get an error because the dimensions do not match correctly,

but for fun, we could transpose B to get conformable matrices. The transpose function t only

works for matrices (and data frames).

> try(A * B) # an error

[,1] [,2] [,3]

[1,] 2 12 30

[2,] 6 20 42

> A %*% t(B) # this is alright

[,1] [,2]

[1,] 44 53

[2,] 56 68
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To get the ordinary matrix inverse use the solve function:

> solve(A %*% t(B)) # input matrix must be square

[,1] [,2]

[1,] 2.833333 -2.208333

[2,] -2.333333 1.833333

Arrays more general than matrices, and some functions (like transpose) do not work for the

more general array. Here is what an array looks like:

> array(LETTERS[1:24], dim = c(3,4,2))

, , 1

[,1] [,2] [,3] [,4]

[1,] "A" "D" "G" "J"

[2,] "B" "E" "H" "K"

[3,] "C" "F" "I" "L"

, , 2

[,1] [,2] [,3] [,4]

[1,] "M" "P" "S" "V"

[2,] "N" "Q" "T" "W"

[3,] "O" "R" "U" "X"

We can test with is.array and may coerce with as.array.

D.1.3 Data Frames

A data frame is a rectangular array of information with a special status in R. It is used as the

fundamental data structure by many of the modeling functions. It is like a matrix in that all of

the columns must be the same length, but it is more general than a matrix in that columns are

allowed to have different modes.

> x <- c(1.3, 5.2, 6)

> y <- letters[1:3]

> z <- c(TRUE, FALSE, TRUE)

> A <- data.frame(x, y, z)

> A

x y z

1 1.3 a TRUE

2 5.2 b FALSE

3 6.0 c TRUE

Notice the names on the columns of A. We can change those with the names function.

> names(A) <- c("Fred", "Mary", "Sue")

> A
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Fred Mary Sue

1 1.3 a TRUE

2 5.2 b FALSE

3 6.0 c TRUE

Basic command is data.frame. You can test with is.data.frame and you can coerce

with as.data.frame.

D.1.4 Lists

A list is more general than a data frame.

D.1.5 Tables

The word “table” has a special meaning in R. More precisely, a contingency table is an object

of class “table” which is an array

Suppose you have a contingency table and would like to do descriptive or inferential statis-

tics on it. The default form of the table is usually inconvenient to use unless we are working

with a function specially tailored for tables. Here is how to transform your data to a more

manageable form, namely, the raw data used to make the table.

First, we coerce the table to a data frame with :

> A <- as.data.frame(Titanic)

> head(A)

Class Sex Age Survived Freq

1 1st Male Child No 0

2 2nd Male Child No 0

3 3rd Male Child No 35

4 Crew Male Child No 0

5 1st Female Child No 0

6 2nd Female Child No 0

Note that there are as many preliminary columns of A as there are dimensions to the ta-

ble. The rows of A contain every possible combination of levels from each of the dimensions.

There is also a Freq column, which shows how many observations there were at that particular

combination of levels.

The form of A is often sufficient for our purposes, but more often we need to do more work:

we would usually like to repeat each row of A exactly the number of times shown in the Freq

column. The reshape package [89] has the function untable designed for that very purpose:

> library(reshape)

> B <- with(A, untable(A, Freq))

> head(B)

Class Sex Age Survived Freq

3 3rd Male Child No 35

3.1 3rd Male Child No 35

3.2 3rd Male Child No 35

3.3 3rd Male Child No 35

3.4 3rd Male Child No 35

3.5 3rd Male Child No 35
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Now, this is more like it. Note that we slipped in a call to the with function, which was

done to make the call to untable more pretty; we could just as easily have done

untable(TitanicDF , A$Freq)

The only fly in the ointment is the lingering Freq column which has repeated values that

do not have any meaning any more. We could just ignore it, but it would be better to get rid

of the meaningless column so that it does not cause trouble later. While we are at it, we could

clean up the rownames, too.

> C <- B[, -5]

> rownames(C) <- 1:dim(C)[1]

> head(C)

Class Sex Age Survived

1 3rd Male Child No

2 3rd Male Child No

3 3rd Male Child No

4 3rd Male Child No

5 3rd Male Child No

6 3rd Male Child No

D.1.6 More about Tables

Suppose you want to make a table that looks like this:

There are at least two ways to do it.

• Using a matrix:

> tab <- matrix(1:6, nrow = 2, ncol = 3)

> rownames(tab) <- c("first", "second")

> colnames(tab) <- c("A", "B", "C")

> tab

A B C

first 1 3 5

second 2 4 6

◦ note that the columns are filled in consecutively by default. If you want to fill the

data in by rows then do byrow = TRUE in the matrix command.

◦ the object is a matrix

• Using a dataframe

> p <- c("milk", "tea")

> g <- c("milk", "tea")

> catgs <- expand.grid(poured = p, guessed = g)

> cnts <- c(3, 1, 1, 3)

> D <- cbind(catgs, count = cnts)

> xtabs(count ~ poured + guessed, data = D)
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guessed

poured milk tea

milk 3 1

tea 1 3

◦ again, the data are filled in column-wise.

◦ the object is a dataframe

◦ if you want to store it as a table then do A <- xtabs(count ~ poured + guessed, data

= D)

D.2 Importing Data

Statistics is the study of data, so the statistician’s first step is usually to obtain data from some-

where or another and read them into R. In this section we describe some of the most common

sources of data and how to get data from those sources into a running R session.

For more information please refer to the R Data Import/Export Manual, [68] and An Intro-

duction to R , [85].

D.2.1 Data in Packages

There are many data sets stored in the datasets package of base R. To see a list of them all

issue the command data(package = "datasets"). The output is omitted here because the

list is so long. The names of the data sets are listed in the left column. Any data set in that list is

already on the search path by default, which means that a user can use it immediately without

any additional work.

There are many other data sets available in the thousands of contributed packages. To see

the data sets available in those packages that are currently loaded into memory issue the single

command data(). If you would like to see all of the data sets that are available in all packages

that are installed on your computer (but not necessarily loaded), issue the command

data(package = .packages(all.available = TRUE))

To load the data set foo in the contributed package bar issue the commands library(bar)

followed by data(foo), or just the single command

data(foo, package = "bar")

D.2.2 Text Files

Many sources of data are simple text files. The entries in the file are separated by delimeters

such as TABS (tab-delimeted), commas (comma separated values, or .csv, for short) or even

just white space (no special name). A lot of data on the Internet are stored with text files, and

even if they are not, a person can copy-paste information from a web page to a text file, save it

on the computer, and read it into R.
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D.2.3 Other Software Files

Often the data set of interest is stored in some other, proprietary, format by third-party software

such as Minitab, SAS, or SPSS. The foreign package supports import/conversion from many

of these formats. Please note, however, that data sets from other software sometimes have

properties with no direct analogue in R. In those cases the conversion process may lose some

information which will need to be reentered manually from within R. See the Data Import/Ex-

port Manual.

As an example, suppose the data are stored in the SPSS file foo.sav which the user has

copied to the working directory; it can be imported with the commands

> library(foreign)

> read.spss("foo.sav")

See ?read.spss for the available options to customize the file import. Note that the R

Commander will import many of the common file types with a menu driven interface.

D.2.4 Importing a Data Frame

The basic command is read.table.

D.3 Creating New Data Sets

Using c

Using scan

Using the R Commander.

D.4 Editing Data

D.4.1 Editing Data Values

D.4.2 Inserting Rows and Columns

D.4.3 Deleting Rows and Columns

D.4.4 Sorting Data

We can sort a vector with the sort function. Normally we have a data frame of several columns

(variables) and many, many rows (observations). The goal is to shuffle the rows so that they are

ordered by the values of one or more columns. This is done with the order function.

For example, we may sort all of the rows of the Puromycin data (in ascending order) by

the variable conc with the following:

> Tmp <- Puromycin[order(Puromycin$conc), ]

> head(Tmp)
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conc rate state

1 0.02 76 treated

2 0.02 47 treated

13 0.02 67 untreated

14 0.02 51 untreated

3 0.06 97 treated

4 0.06 107 treated

We can accomplish the same thing with the command

> with(Puromycin, Puromycin[order(conc), ])

We can sort by more than one variable. To sort first by state and next by conc do

> with(Puromycin, Puromycin[order(state, conc), ])

If we would like to sort a numeric variable in descending order then we put a minus sign in

front of it.

> Tmp <- with(Puromycin, Puromycin[order(-conc), ])

> head(Tmp)

conc rate state

11 1.10 207 treated

12 1.10 200 treated

23 1.10 160 untreated

9 0.56 191 treated

10 0.56 201 treated

21 0.56 144 untreated

If we would like to sort by a character (or factor) in decreasing order then we can use the

xtfrm function which produces a numeric vector in the same order as the character vector.

> Tmp <- with(Puromycin, Puromycin[order(-xtfrm(state)), ])

> head(Tmp)

conc rate state

13 0.02 67 untreated

14 0.02 51 untreated

15 0.06 84 untreated

16 0.06 86 untreated

17 0.11 98 untreated

18 0.11 115 untreated

D.5 Exporting Data

The basic function is write.table. The MASS package also has a write.matrix function.
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D.6 Reshaping Data

• Aggregation

• Convert Tables to data frames and back

rbind, cbind

ab[order(ab[,1]),]

complete.cases

aggregate

stack
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Appendix E

Mathematical Machinery

This appendix houses many of the standard definitions and theorems that are used at some

point during the narrative. It is targeted for someone reading the book who forgets the precise

definition of something and would like a quick reminder of an exact statement. No proofs are

given, and the interested reader should consult a good text on Calculus (say, Stewart [80] or

Apostol [4, 5]), Linear Algebra (say, Strang [82] and Magnus [62]), Real Analysis (say, Folland

[27], or Carothers [12]), or Measure Theory (Billingsley [8], Ash [6], Resnick [70]) for details.

E.1 Set Algebra

We denote sets by capital letters, A, B, C, etc. The letter S is reserved for the sample space,

also known as the universe or universal set, the set which contains all possible elements. The

symbol ∅ represents the empty set, the set with no elements.

Set Union, Intersection, and Difference

Given subsets A and B, we may manipulate them in an algebraic fashion. To this end, we

have three set operations at our disposal: union, intersection, and difference. Below is a table

summarizing the pertinent information about these operations.

Identities and Properties

1. A ∪ ∅ = A, A ∩ ∅ = ∅

2. A ∪ S = S , A ∩ S = A

3. A ∪ Ac = S , A ∩ Ac = ∅

4. (Ac)c = A

Name Denoted Defined by elements R syntax

Union A ∪ B in A or B or both union(A, B)

Intersection A ∩ B in both A and B intersect(A, B)

Difference A\B in A but not in B setdiff(A, B)

Complement Ac in S but not in A setdiff(S, A)

Table E.1: Set operations
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5. The Commutative Property:

A ∪ B = B ∪ A, A ∩ B = B ∩ A (E.1.1)

6. The Associative Property:

(A ∪ B) ∪ C = A ∪ (B ∪C), (A ∩ B) ∩ C = A ∩ (B ∩C) (E.1.2)

7. The Distributive Property:

A ∪ (B ∩C) = (A ∪ B) ∩ (A ∪ B), A ∩ (B ∪C) = (A ∩ B) ∪ (A ∩ B) (E.1.3)

8. DeMorgan’s Laws

(A ∪ B)c = Ac ∩ Bc and (A ∩ B)c = Ac ∪ Bc, (E.1.4)

or more generally,

⋃

α

Aα


c

=
⋂

α

Ac
α, and


⋂

α

Aα


c

=
⋃

α

Ac
α (E.1.5)

E.2 Differential and Integral Calculus

A function f of one variable is said to be one-to-one if no two distinct x values are mapped to

the same y = f (x) value. To show that a function is one-to-one we can either use the horizontal

line test or we may start with the equation f (x1) = f (x2) and use algebra to show that it implies

x1 = x2.

Limits and Continuity

Definition E.1. Let f be a function defined on some open interval that contains the number a,

except possibly at a itself. Then we say the limit of f (x) as x approaches a is L, and we write

lim
x→a

f (x) = L, (E.2.1)

if for every ǫ > 0 there exists a number δ > 0 such that 0 < |x − a| < δ implies | f (x) − L| < ǫ.
Definition E.2. A function f is continuous at a number a if

lim
x→a

f (x) = f (a). (E.2.2)

The function f is right-continuous at the number a if limx→a+ f (x) = f (a), and left-continuous

at a if limx→a− f (x) = f (a). Finally, the function f is continuous on an interval I if it is

continuous at every number in the interval.

Differentiation

Definition E.3. The derivative of a function f at a number a, denoted by f ′(a), is

f ′(a) = lim
h→0

f (a + h) − f (a)

h
, (E.2.3)

provided this limit exists.

A function is differentiable at a if f ′(a) exists. It is differentiable on an open interval (a, b)

if it is differentiable at every number in the interval.
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Differentiation Rules

In the table that follows, f and g are differentiable functions and c is a constant.

d
dx
c = 0 d

dx
xn = nxn−1 (c f )′ = c f ′

( f ± g)′ = f ′ ± g′ ( f g)′ = f ′g + f g′
(
f

g

)′
=

f ′g− f g′
g2

Table E.2: Differentiation rules

Theorem E.4. Chain Rule: If f and g are both differentiable and F = f ◦ g is the composite

function defined by F(x) = f [g(x)], then F is differentiable and F′(x) = f ′[g(x)] · g′(x).

Useful Derivatives

d
dx
ex = ex d

dx
ln x = x−1 d

dx
sin x = cos x

d
dx
cos x = − sin x d

dx
tan x = sec2 x d

dx
tan−1 x = (1 + x2)−1

Table E.3: Some derivatives

Optimization

Definition E.5. A critical number of the function f is a value x∗ for which f ′(x∗) = 0 or for

which f ′(x∗) does not exist.

Theorem E.6. First Derivative Test. If f is differentiable and if x∗ is a critical number of f and

if f ′(x) ≥ 0 for x ≤ x∗ and f ′(x) ≤ 0 for x ≥ x∗ , then x∗ is a local maximum of f . If f ′(x) ≤ 0

for x ≤ x∗ and f ′(x) ≥ 0 for x ≥ x∗ , then x∗ is a local minimum of f .

Theorem E.7. Second Derivative Test. If f is twice differentiable and if x∗ is a critical number

of f , then x∗ is a local maximum of f if f ′′(x∗) < 0 and x∗ is a local minimum of f if f ′′(x∗) > 0.

Integration

As it turns out, there are all sorts of things called “integrals”, each defined in its own idiosyn-

cratic way. There are Riemann integrals, Lebesgue integrals, variants of these called Stieltjes

integrals, Daniell integrals, Ito integrals, and the list continues. Given that this is an introduc-

tory book, we will use the Riemannian integral with the caveat that the Riemann integral is not

the integral that will be used in more advanced study.

Definition E.8. Let f be defined on [a, b], a closed interval of the real line. For each n, divide

[a, b] into subintervals [xi, xi+1], i = 0, 1, . . . , n − 1, of length ∆xi = (b − a)/n where x0 = a
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and xn = b, and let x∗i be any points chosen from the respective subintervals. Then the definite

integral of f from a to b is defined by

∫ b

a

f (x) dx = lim
n→∞

n−1∑

i=0

f (x∗i )∆xi, (E.2.4)

provided the limit exists, and in that case, we say that f is integrable from a to b.

Theorem E.9. The Fundamental Theorem of Calculus. Suppose f is continuous on [a, b]. Then

1. the function g defined by g(x) =
∫ x

a
f (t) dt, a ≤ x ≤ b, is continuous on [a, b] and

differentiable on (a, b) with g′(x) = f (x).

2.
∫ b

a
f (x) dx = F(b) − F(a), where F is any antiderivative of f , that is, any function F

satisfying F′ = f .

Change of Variables

Theorem E.10. If g is a differentiable function whose range is the interval [a, b] and if both f

and g′ are continuous on the range of u = g(x), then

∫ g(b)

g(a)

f (u) du =

∫ b

a

f [g(x)] g′(x) dx. (E.2.5)

Useful Integrals

∫
xn dx = xn+1/(n + 1), n , −1

∫
ex dx = ex

∫
x−1 dx = ln |x|

∫
tan x dx = ln | sec x|

∫
ax dx = ax/ ln a

∫
(x2 + 1)−1 dx = tan−1 x

Table E.4: Some integrals (constants of integration omitted)

Integration by Parts

∫
u dv = uv −

∫
v du (E.2.6)

Theorem E.11. L’Hôpital’s Rule. Suppose f and g are differentiable and g′(x) , 0 near a,

except possibly at a. Suppose that the limit

lim
x→a

f (x)

g(x)
(E.2.7)

is an indeterminate form of type 0
0
or∞/∞. Then

lim
x→a

f (x)

g(x)
= lim

x→a

f ′(x)

g′(x)
, (E.2.8)

provided the limit on the right-hand side exists or is infinite.
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Improper Integrals

If
∫ t

a
f (x)dx exists for every number t ≥ a, then we define

∫ ∞

a

f (x) dx = lim
t→∞

∫ t

a

f (x) dx, (E.2.9)

provided this limit exists as a finite number, and in that case we say that
∫ ∞
a

f (x) dx is conver-

gent. Otherwise, we say that the improper integral is divergent.

If
∫ b

t
f (x) dx exists for every number t ≤ b, then we define

∫ b

−∞
f (x) dx = lim

t→−∞

∫ b

t

f (x) dx, (E.2.10)

provided this limit exists as a finite number, and in that case we say that
∫ b

−∞ f (x) dx is conver-

gent. Otherwise, we say that the improper integral is divergent.

If both
∫ ∞
a

f (x) dx and
∫ a

−∞ f (x) dx are convergent, then we define

∫ ∞

−∞
f (x) dx =

∫ a

−∞
f (x) dx +

∫ ∞

a

f (x)dx, (E.2.11)

and we say that
∫ ∞
−∞ f (x) dx is convergent. Otherwise, we say that the improper integral is

divergent.

E.3 Sequences and Series

A sequence is an ordered list of numbers, a1, a2, a3, . . . , an = (ak)
n
k=1. A sequence may be finite

or infinite. In the latter case we write a1, a2, a3, . . .= (ak)
∞
k=1. We say that the infinite sequence

(ak)
∞
k=1 converges to the finite limit L, and we write

lim
k→∞

ak = L, (E.3.1)

if for every ǫ > 0 there exists an integer N ≥ 1 such that |ak − L| < ǫ for all k ≥ N. We say that

the infinite sequence (ak)
∞
k=1 diverges to +∞ (or -∞) if for every M ≥ 0 there exists an integer

N ≥ 1 such that ak ≥ M for all k ≥ N (or ak ≤ −M for all k ≥ N).

Finite Series

n∑

k=1

k = 1 + 2 + · · · + n = n(n + 1)

2
(E.3.2)

n∑

k=1

k2 = 12 + 22 + · · · + n2 = n(n + 1)(2n + 3)

6
(E.3.3)

The Binomial Series

n∑

k=0

(
n

k

)
an−kbk = (a + b)n (E.3.4)
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Infinite Series

Given an infinite sequence of numbers a1, a2, a3, . . .= (ak)
∞
k=1, let sn denote the partial sum of

the first n terms:

sn =

n∑

k=1

ak = a1 + a2 + · · · + an. (E.3.5)

If the sequence (sn)
∞
n=1 converges to a finite number S then we say that the infinite series

∑
k ak

is convergent and write
∞∑

k=1

ak = S . (E.3.6)

Otherwise we say the infinite series is divergent.

Rules for Series

Let (ak)
∞
k=1 and (bk)

∞
k=1 be infinite sequences and let c be a constant.

∞∑

k=1

cak = c

∞∑

k=1

ak (E.3.7)

∞∑

k=1

(ak ± bk) =
∞∑

k=1

ak ±
∞∑

k=1

bk (E.3.8)

In both of the above the series on the left is convergent if the series on the right is (are)

convergent.

The Geometric Series
∞∑

k=0

xk =
1

1 − x
, |x| < 1. (E.3.9)

The Exponential Series
∞∑

k=0

xk

k!
= ex, −∞ < x < ∞. (E.3.10)

Other Series
∞∑

k=0

(
m + k − 1
m − 1

)
xk =

1

(1 − x)m
, |x| < 1. (E.3.11)

−
∞∑

k=1

xn

n
= ln(1 − x), |x| < 1. (E.3.12)

∞∑

k=0

(
n

k

)
xk = (1 + x)n, |x| < 1.
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Taylor Series

If the function f has a power series representation at the point a with radius of convergence

R > 0, that is, if

f (x) =

∞∑

k=0

ck(x − a)k, |x − a| < R, (E.3.14)

for some constants (ck)
∞
k=0, then ck must be

ck =
f (k)(a)

k!
, k = 0, 1, 2, . . . (E.3.15)

Furthermore, the function f is differentiable on the open interval (a − R, a + R) with

f ′(x) =

∞∑

k=1

kck(x − a)k−1, |x − a| < R, (E.3.16)

∫
f (x) dx = C +

∞∑

k=0

ck
(x − a)k+1

k + 1
, |x − a| < R, (E.3.17)

in which case both of the above series have radius of convergence R.

E.4 The Gamma Function

The Gamma function Γ will be defined in this book according to the formula

Γ(α) =

∫ ∞

0

xα−1e−x dx, for α > 0. (E.4.1)

Fact E.12. Properties of the Gamma Function:

• Γ(α) = (α − 1)Γ(α − 1) for any α > 1, and so Γ(n) = (n − 1)! for any positive integer n.

• Γ(1/2) =
√
π.

E.5 Linear Algebra

Matrices

A matrix is an ordered array of numbers or expressions; typically we write A =
(
ai j

)
or A =[

ai j
]
. If A has m rows and n columns then we write

Am×n =



a11 a12 · · · a1n
a21 a22 · · · a2n
...

...
. . .

...

am1 am2 · · · amn


. (E.5.1)

The identity matrix In×n is an n × n matrix with zeros everywhere except for 1’s along the main

diagonal:

In×n =



1 0 · · · 0

0 1 · · · 0
...
...
. . .

...

0 0 · · · 1


. (E.5.2)
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and the matrix with ones everywhere is denoted Jn×n:

Jn×n =



1 1 · · · 1

1 1 · · · 1
...
...
. . .

...

1 1 · · · 1


. (E.5.3)

A vector is a matrix with one of the dimensions equal to one, such as Am×1 (a column

vector) or A1×n (a row vector). The zero vector 0n×1 is an n × 1 matrix of zeros:

0n×1 =
[
0 0 · · · 0

]T
. (E.5.4)

The transpose of a matrix A =
(
ai j

)
is the matrix AT =

(
a ji

)
, which is just like A except the

rows are columns and the columns are rows. The matrix A is said to be symmetric if AT = A.

Note that (AB)T = BTAT.

The trace of a square matrix A is the sum of its diagonal elements: tr(A) =
∑

i aii.

The inverse of a square matrixAn×n (when it exists) is the unique matrix denoted A−1 which

satisfies AA−1 = A−1A = In×n. If A−1 exists then we say A is invertible, or alternatively

nonsingular. Note that
(
AT

)−1
=

(
A−1

)T
.

Fact E.13. The inverse of the 2 × 2 matrix

A =

[
a b

c d

]
is A−1 =

1

ad − bc

[
d −b
−c a

]
, (E.5.5)

provided ad − bc , 0.

Determinants

Definition E.14. The determinant of a square matrix An×n is denoted det(A) or |A| and is

defined recursively by

det(A) =

n∑

i=1

(−1)i+ jai j det(Mi j), (E.5.6)

whereMi j is the submatrix formed by deleting the ith row and jth column of A. We may choose

any fixed 1 ≤ j ≤ n we wish to compute the determinant; the final result is independent of the

j chosen.

Fact E.15. The determinant of the 2 × 2 matrix

A =

[
a b

c d

]
is |A| = ad − bc. (E.5.7)

Fact E.16. A square matrix A is nonsingular if and only if det(A) , 0.

Positive (Semi)Definite

If the matrix A satisfies xTAx ≥ 0 for all vectors x , 0, then we say that A is positive semidef-

inite. If strict inequality holds for all x , 0, then A is positive definite. The connection to

statistics is that covariance matrices (see Chapter 7) are always positive semidefinite, and many

of them are even positive definite.
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E.6 Multivariable Calculus

Partial Derivatives

If f is a function of two variables, its first-order partial derivatives are defined by

∂ f

∂x
=
∂

∂x
f (x, y) = lim

h→0

f (x + h, y) − f (x, y)

h
(E.6.1)

and
∂ f

∂y
=
∂

∂y
f (x, y) = lim

h→0

f (x, y + h) − f (x, y)

h
, (E.6.2)

provided these limits exist. The second-order partial derivatives of f are defined by

∂2 f

∂x2
=
∂

∂x

(
∂ f

∂x

)
,
∂2 f

∂y2
=
∂

∂y

(
∂ f

∂y

)
,
∂2 f

∂x∂y
=
∂

∂x

(
∂ f

∂y

)
,
∂2 f

∂y∂x
=
∂

∂y

(
∂ f

∂x

)
. (E.6.3)

In many cases (and for all cases in this book) it is true that

∂2 f

∂x∂y
=
∂2 f

∂y∂x
. (E.6.4)

Optimization

An function f of two variables has a local maximum at (a, b) if f (x, y) ≥ f (a, b) for all points

(x, y) near (a, b), that is, for all points in an open disk centered at (a, b). The number f (a, b) is

then called a local maximum value of f . The function f has a local minimum if the same thing

happens with the inequality reversed.

Suppose the point (a, b) is a critical point of f , that is, suppose (a, b) satisfies

∂ f

∂x
(a, b) =

∂ f

∂y
(a, b) = 0. (E.6.5)

Further suppose ∂
2 f

∂x2
and ∂

2 f

∂y2
are continuous near (a, b). Let the Hessian matrix H (not to be

confused with the hat matrix H of Chapter 12) be defined by

H =


∂2 f

∂x2
∂2 f

∂x∂y
∂2 f

∂y∂x

∂2 f

∂y2

 . (E.6.6)

We use the following rules to decide whether (a, b) is an extremum (that is, a local minimum or

local maximum) of f .

• If det(H) > 0 and ∂
2 f

∂x2
(a, b) > 0, then (a, b) is a local minimum of f .

• If det(H) > 0 and
∂2 f

∂x2
(a, b) < 0, then (a, b) is a local maximum of f .

• If det(H) < 0, then (a, b) is a saddle point of f and so is not an extremum of f .

• If det(H) = 0, then we do not know the status of (a, b); it might be an extremum or it

might not be.
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Double and Multiple Integrals

Let f be defined on a rectangle R = [a, b]×[c, d], and for eachm and n divide [a, b] (respectively

[c, d]) into subintervals [x j, x j+1], i = 0, 1, . . . ,m − 1 (respectively [yi, yi+1]) of length ∆x j =

(b − a)/m (respectively ∆yi = (d − c)/n) where x0 = a and xm = b (and y0 = c and yn = d ), and

let x∗
j
(y∗

i
) be any points chosen from their respective subintervals. Then the double integral of

f over the rectangle R is

"

R

f (x, y) dA =

d∫

c

b∫

a

f (x, y) dxdy = lim
m,n→∞

n∑

i=1

m∑

j=1

f (x∗j, y
∗
i )∆x j∆yi, (E.6.7)

provided this limit exists. Multiple integrals are defined in the same way just with more letters

and sums.

Bivariate and Multivariate Change of Variables

Suppose we have a transformation1 T that maps points (u, v) in a set A to points (x, y) in a set B.

We typically write x = x(u, v) and y = y(u, v), and we assume that x and y have continuous first-

order partial derivatives. We say that T is one-to-one if no two distinct (u, v) pairs get mapped

to the same (x, y) pair; in this book, all of our multivariate transformations T are one-to-one.

The Jacobian (pronounced “yah-KOH-bee-uhn”) of T is denoted by ∂(x, y)/∂(u, v) and is

defined by the determinant of the following matrix of partial derivatives:

∂(x, y)

∂(u, v)
=

∣∣∣∣∣∣
∂x
∂u

∂x
∂v

∂y

∂u

∂y

∂v

∣∣∣∣∣∣ =
∂x

∂u

∂y

∂v
− ∂x
∂v

∂y

∂u
. (E.6.8)

If the function f is continuous on A and if the Jacobian of T is nonzero except perhaps on the

boundary of A, then

"
B

f (x, y) dx dy =

"
A

f
[
x(u, v), y(u, v)

] ∣∣∣∣∣
∂(x, y)

∂(u, v)

∣∣∣∣∣ du dv. (E.6.9)

A multivariate change of variables is defined in an analogous way: the one-to-one transfor-

mation T maps points (u1, u2, . . . , un) to points (x1, x2, . . . , xn), the Jacobian is the determinant

of the n × n matrix of first-order partial derivatives of T (lined up in the natural manner), and

instead of a double integral we have a multiple integral over multidimensional sets A and B.

1For our purposes T is in fact the inverse of a one-to-one transformation that we are initially given. We usually

start with functions that map (x, y) 7−→ (u, v), and one of our first tasks is to solve for the inverse transformation

that maps (u, v) 7−→ (x, y). It is this inverse transformation which we are calling T .



Appendix F

Writing Reports with R

Perhaps the most important part of a statistician’s job once the analysis is complete is to com-

municate the results to others. This is usually done with some type of report that is delivered to

the client, manager, or administrator. Other situations that call for reports include term papers,

final projects, thesis work, etc. This chapter is designed to pass along some tips about writing

reports once the work is completed with R.

F.1 What to Write

It is possible to summarize this entire appendix with only one sentence: the statistician’s goal

is to communicate with others. To this end, there are some general guidelines that I give to

students which are based on an outline originally written and shared with me by Dr. G. Andy

Chang.

Basic Outline for a Statistical Report

1. Executive Summary (a one page description of the study and conclusion)

2. Introduction

(a) What is the question, and why is it important?

(b) Is the study observational or experimental?

(c) What are the hypotheses of interest to the researcher?

(d) What are the types of analyses employed? (one sample t-test, paired-sample t-test,

ANOVA, chi-square test, regression, . . . )

3. Data Collection

(a) Describe how the data were collected in detail.

(b) Identify all variable types: quantitative, qualitative, ordered or nominal (with lev-

els), discrete, continuous.

(c) Discuss any limitations of the data collection procedure. Look carefully for any

sources of bias.

4. Summary Information

349
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(a) Give numeric summaries of all variables of interest.

i. Discrete: (relative) frequencies, contingency tables, odds ratios, etc.

ii. Continuous: measures of center, spread, shape.

(b) Give visual summaries of all variables of interest.

i. Side-by-side boxplots, scatterplots, histograms, etc.

(c) Discuss any unusual features of the data (outliers, clusters, granularity, etc.)

(d) Report any missing data and identify any potential problems or bias.

5. Analysis

(a) State any hypotheses employed, and check the assumptions.

(b) Report test statistics, p-values, and confidence intervals.

(c) Interpret the results in the context of the study.

(d) Attach (labeled) tables and/or graphs and make reference to them in the report as

needed.

6. Conclusion

(a) Summarize the results of the study. What did you learn?

(b) Discuss any limitations of the study or inferences.

(c) Discuss avenues of future research suggested by the study.

F.2 How to Write It with R

Once the decision has been made what to write, the next task is to typeset the information to be

shared. To do this the author will need to select software to use to write the documents. There

are many options available, and choosing one over another is sometimes a matter of taste. But

not all software were created equal, and R plays better with some applications than it does with

others.

In short, R does great with LATEX and there are many resources available to make writing a

document with R and LATEX easier. But LATEX is not for the beginner, and there are other word

processors which may be acceptable depending on the circumstances.

F.2.1 MicrosoftrWord

It is a fact of life that MicrosoftrWindows is currently the most prevalent desktop operating

system on the planet. Those who own Windows also typically own some version of Microsoft

Office, thus Microsoft Word is the default word processor for many, many people.

The standard way to write an R report with MicrosoftrWord is to generate material with

R and then copy-paste the material at selected places in a Word document. An advantage to

this approach is that Word is nicely designed to make it easy to copy-and-paste from RGui to

the Word document.

A disadvantage to this approach is that the R input/output needs to be edited manually by

the author to make it readable for others. Another disadvantage is that the approach does not
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work on all operating systems (not on Linux, in particular). Yet another disadvantage is that

Microsoftr Word is proprietary, and as a result, R does not communicate with Microsoftr

Word as well as it does with other software as we shall soon see.

Nevertheless, if you are going to write a report with Word there are some steps that you can

take to make the report more amenable to the reader.

1. Copy and paste graphs into the document. You can do this by right clicking on the graph

and selecting Copy as bitmap, or Copy as metafile, or one of the other options. Then

move the cursor to the document where you want the picture, right-click, and select

Paste.

2. Resize (most) pictures so that they take up no more than 1/2 page. You may want to put

graphs side by side; do this by inserting a table and placing the graphs inside the cells.

3. Copy selected R input and output to the Word document. All code should be separated

from the rest of the writing, except when specifically mentioning a function or object in

a sentence.

4. The font of R input/output should be Courier New, or some other monowidth font (not

Times New Roman or Calibri); the default font size of 12 is usually too big for R code

and should be reduced to, for example, 10pt.

It is also possible to communicate with R through OpenOffice.org, which can export to the

proprietary (.doc) format.

F.2.2 OpenOffice.org and odfWeave

OpenOffice.org (OO.o) is an open source desktop productivity suite which mirrors Microsoftr

Office. It is especially nice because it works on all operating systems. OO.o can read most

document formats, and in particular, it will read .doc files. The standard OO.o file extension

for documents is .odt, which stands for “open document text”.

The odfWeave package [55] provides a way to generate an .odt file withR input and output

code formatted correctly and inserted in the correct places, without any additional work. In this

way, one does not need to worry about all of the trouble of typesetting R output. Another

advantage of odfWeave is that it allows you to generate the report dynamically; if the data

underlying the report change or are updated, then a few clicks (or commands) will generate a

brand new report.

One disadvantage is that the source .odt file is not easy to read, because it is difficult to

visually distinguish the noweb parts (where the R code is) from the non-noweb parts. This can

be fixed by manually changing the font of the noweb sections to, for instance, Courier font,

size 10pt. But it is extra work. It would be nice if a program would discriminate between the

two different sections and automatically typeset the respective parts in their correct fonts. This

is one of the advantages to LYX.

Another advantage of OO.o is that even after you have generated the outfile, it is fully

editable just like any other .odt document. If there are errors or formatting problems, they can

be fixed at any time.

Here are the basic steps to typeset a statistical report with OO.o.

1. Write your report as an .odt document in OO.o just as you would any other document.

Call this document infile.odt, and make sure that it is saved in your working directory.
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2. At the places you would like to insert R code in the document, write the code chunks in

the following format:

<<>>=

x <- rnorm(10)

mean(x)

@

or write whatever code you want between the symbols <<>>= and @.

3. Open R and type the following:

> library(odfWeave)

> odfWeave(file = "infile.odt", dest = "outfile.odt")

4. The compiled (.odt) file, complete with all of the R output automatically inserted in the

correct places, will now be the file outfile.odt located in the working directory. Open

outfile.odt, examine it, modify it, and repeat if desired.

There are all sorts of extra things that can be done. For example, the R commands can be sup-

pressed with the tag <<echo = FALSE>>=, and the R output may be hidden with <<results

= hide>>=. See the odfWeave package documentation for details.

F.2.3 Sweave and LATEX

This approach is nice because it works for all operating systems. One can quite literally typeset

anything with LATEX. All of this power comes at a price, however. The writer must learn the

LATEX language which is a nontrivial enterprise. Even given the language, if there is a single

syntax error, or a single delimeter missing in the entire document, then the whole thing breaks.

LATEX can do anything, but it is relatively difficult to learn and very grumpy about syntax

errors and delimiter matching. there are however programs useful for formatting LATEX.

A disadvantage is that you cannot see the mathematical formulas until you run the whole

file with LATEX.

A disadvantage is that figures and tables are relatively difficult.

There are programs to make the process easier AUCTEX

dev.copy2eps, also dev.copy2pdf

http://www.stat.uni-muenchen.de/~leisch/Sweave/

F.2.4 Sweave and LYX

This approach is nice because it works for all operating systems. It gives you everything from

the last section and makes it easier to use LATEX. That being said, it is better to know LATEX

already when migrating to LYX, because you understand all of the machinery going on under

the hood.

Program Listings and the R language

This book was written with LYX.

http://gregor.gorjanc.googlepages.com/lyx-sweave

http://www.stat.uni-muenchen.de/~leisch/Sweave/
http://gregor.gorjanc.googlepages.com/lyx-sweave
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F.3 Formatting Tables

The prettyR package

the Hmisc package

> library(Hmisc)

> summary(cbind(Sepal.Length, Sepal.Width) ~ Species, data = iris)

cbind(Sepal.Length, Sepal.Width) N=150

+-------+----------+---+------------+-----------+

| | |N |Sepal.Length|Sepal.Width|

+-------+----------+---+------------+-----------+

|Species|setosa | 50|5.006000 |3.428000 |

| |versicolor| 50|5.936000 |2.770000 |

| |virginica | 50|6.588000 |2.974000 |

+-------+----------+---+------------+-----------+

|Overall| |150|5.843333 |3.057333 |

+-------+----------+---+------------+-----------+

There is a method argument to summary, which is set to method = "response" by de-

fault. There are two other methods for summarizing data: reverse and cross. See ?summary.formula

or the following document from Frank Harrell for more details http://biostat.mc.vanderbilt.edu/twiki

F.4 Other Formats

HTML and prettyR

R2HTML

http://biostat.mc.vanderbilt.edu/twiki/bin/view/Main/StatReport
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Appendix G

Instructions for Instructors

WARNING: this appendix is not applicable until the exercises have been written.

Probably this book could more accurately be described as software. The reason is that the

document is one big random variable, one observation realized out of millions. It is electroni-

cally distributed under the GNU FDL, and “free” in both senses: speech and beer.

There are four components to IPSUR: the Document, the Program used to generate it, the R

package that holds the Program, and the Ancillaries that accompany it.

The majority of the data and exercises have been designed to be randomly generated. Differ-

ent realizations of this book will have different graphs and exercises throughout. The advantage

of this approach is that a teacher, say, can generate a unique version to be used in his/her class.

Students can do the exercises and the teacher will have the answers to all of the problems in

their own, unique solutionsmanual. Students may download a different solutions manual online

somewhere else, but none of the answers will match the teacher’s copy.

Then next semester, the teacher can generate a new book and the problems will be more

or less identical, except the numbers will be changed. This means that students from different

sections of the same class will not be able to copy from one another quite so easily. The same

will be true for similar classes at different institutions. Indeed, as long as the instructor protects

his/her key used to generate the book, it will be difficult for students to crack the code. And

if they are industrious enough at this level to find a way to (a) download and decipher my

version’s source code, (b) hack the teacher’s password somehow, and (c) generate the teacher’s

book with all of the answers, then they probably should be testing out of an “Introduction to

Probability and Statistics” course, anyway.

The book that you are reading was created with a random seed which was set at the be-

ginning. The original seed is 42. You can choose your own seed, and generate a new book

with brand new data for the text and exercises, complete with updated manuals. A method I

recommend for finding a seed is to look down at your watch at this very moment and record

the 6 digit hour, minute, and second (say, 9:52:59am): choose that for a seed1. This method al-

ready provides for over 43,000 books, without taking military time into account. An alternative

would be to go to R and type

> options(digits = 16)

> runif(1)

[1] 0.2170129411388189

1In fact, this is essentially the method used by R to select an initial random seed (see ?set.seed). However, the

instructor should set the seed manually so that the book can be regenerated at a later time, if necessary.
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Now choose 2170129411388188 as your secret seed. . . write it down in a safe place and do

not share it with anyone. Next generate the book with your seed using LYX-Sweave or Sweave-

LATEX. You may wish to also generate Student and Instructor Solution Manuals. Guidance

regarding this is given below in the How to Use This Document section.

G.1 Generating This Document

You will need three (3) things to generate this document for yourself, in addition to a current R

distribution which at the time of this writing is R version 2.11.1 (2010-05-31):

1. a LATEX distribution,

2. Sweave (which comes with R automatically), and

3. LYX (optional, but recommended).

We will discuss each of these in turn.

LATEX: The distribution used by the present author was TEX Live (http://www.tug.org/texlive/).

There are plenty of other perfectly suitable LATEX distributions depending on your oper-

ating system, one such alternative being MikTEX (http://miktex.org/) for Microsoft

Windows.

Sweave: If you have R installed, then the required Sweave files are already on your system. . .

somewhere. The only problems that you may have are likely associated with making

sure that your LATEX distribution knows where to find the Sweave.sty file. See the

Sweave Homepage (http://www.statistik.lmu.de/~leisch/Sweave/) for guid-

ance on how to get it working on your particular operating system.

LYX: Strictly speaking, LYX is not needed to generate this document. But this document was

written stem to stern with LYX, taking full advantage of all of the bells and whistles

that LYX has to offer over plain LATEX editors. And it’s free. See the LYX homepage

(http://www.lyx.org/) for additional information.

If you decide to give LYX a try, then you will need to complete some extra steps to

coordinate Sweave and LYX with each other. Luckily, Gregor Gorjanc has a website

and an R News article [36] to help you do exactly that. See the LYX-Sweave homepage

(http://gregor.gorjanc.googlepages.com/lyx-sweave) for details.

An attempt was made to not be extravagant with fonts or packages so that a person would not

need the entire CTAN (or CRAN) installed on their personal computer to generate the book. Nev-

ertheless, there are a few extra packages required. These packages are listed in the preamble

of IPSUR.Rnw, IPSUR.tex, and IPSUR.lyx.

G.2 How to Use This Document

The easiest way to use this document is to install the IPSUR package from CRAN and be all

done. This way would be acceptable if there is another, primary, text being used for the course

and IPSUR is only meant to play a supplementary role.

If you plan for IPSUR to serve as the primary text for your course, then it would be wise

to generate your own version of the document. You will need the source code for the Program

http://www.tug.org/texlive/
http://miktex.org/
http://www.statistik.lmu.de/~leisch/Sweave/
http://www.lyx.org/
http://gregor.gorjanc.googlepages.com/lyx-sweave
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which can be downloaded from CRAN or the IPSUR website. Once the source is obtained there

are four (4) basic steps to generating your own copy.

1. Randomly select a secret “seed” of integers and replace my seed of 42 with your own

seed.

2. Make sure that the maintext branch is turned ON and also make sure that both the

solutions branch and the answers branch are turned OFF. Use LYX or your LATEX

editor with Sweave to generate your unique PDF copy of the book and distribute this

copy to your students. (See the LYX User’s Guide to learn more about branches; the ones

referenced above can be found under Document ⊲ Settings ⊲ Branches.)

3. Turn the maintext branch2 OFF and the solutions branch ON. Generate a “Student

Solutions Manual” which has complete solutions to selected exercises and distribute the

PDF to the students.

4. Leave the solutions branch ON and also turn the answers branch ON and generate an

“Instructor Solutions and Answers Manual” with full solutions to some of the exercises

and just answers to the remaining exercises. Do NOT distribute this to the students –

unless of course you want them to have the answers to all of the problems.

To make it easier for those people who do not want to use LYX (or for whatever reason cannot

get it working), I have included three (3) Sweave files corresponding to the main text, student

solutions, and instructor answers, that are included in the IPSUR source package in the /tex

subdirectory. In principle it is possible to change the seed and generate the three parts separately

with only Sweave and LATEX. This method is not recommended by me, but is perhaps desirable

for some people.

Generating Quizzes and Exams

• you can copy paste selected exercises from the text, put them together, and you have a

quiz. Since the numbers are randomly generated you do not need to worry about different

semesters. And youwill have answer keys already for all of your QUIZZES and EXAMS,

too.

G.3 Ancillary Materials

In addition to the main text, student manual, and instructor manual, there are two other ancil-

laries. IPSUR.R, and IPSUR.RData.

G.4 Modifying This Document

Since this document is released under the GNU-FDL, you are free to modify this document

however you wish (in accordance with the license – see Appendix B). The immediate benefit

of this is that you can generate the book, with brand new problem sets, and distribute it to your

students simply as a PDF (in an email, for instance). As long as you distribute less than 100

2You can leave themaintext branchON when generating the solutions manuals, but (1) all of the page numbers

will be different, and (2) the typeset solutions will generate and take up a lot of space between exercises.
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such Opaque copies, you are not even required by the GNU-FDL to share your Transparent

copy (the source code with the secret key) that you used to generate them. Next semester,

choose a new key and generate a new copy to be distributed to the new class.

But more generally, if you are not keen on the way I explained (or failed to

explain) something, then you are free to rewrite it. If you would like to cover more

(or less) material, then you are free to add (or delete) whatever Chapters/Section-

s/Paragraphs that you wish. And since you have the source code, you do not need

to retype the wheel.

Some individuals will argue that the nature of a statistics textbook like this one, many of the

exercises being randomly generated by design, does a disservice to the students because the

exercises do not use real-world data. That is a valid criticism. . . but in my case the benefits

outweighed the detriments and I moved forward to incorporate static data sets whenever it was

feasible and effective. Frankly, and most humbly, the only response I have for those individuals

is: “Please refer to the preceding paragraph.”



Appendix H

RcmdrTestDrive Story

The goal of RcmdrTestDrive was to have a data set sufficiently rich in the types of data

represented such that a person could load it into the R Commander and be able to explore all

of Rcmdr’s menu options at once. I decided early-on that an efficient way to do this would be

to generate the data set randomly, and later add to the list of variables as more Rcmdr menu

options became available. Generating the data was easy, but generating a story that related all

of the respective variables proved to be less so.

In the Summer of 2006 I gave a version of the raw data and variable names to my STAT

3743 Probability and Statistics class and invited each of them to write a short story linking all

of the variables together in a coherent narrative. No further direction was given.

The most colorful of those I received was written by Jeffery Cornfield, submitted July 12,

2006, and is included below with his permission. It was edited slightly by the present author

and updated to respond dynamically to the random generation of RcmdrTestDrive; otherwise,

the story has been unchanged.

Case File: ALU-179 “Murder Madness in Toon Town”

***WARNING***

***This file is not for the faint of heart, dear reader, because it is filled with horrible

images that will haunt your nightmares. If you are weak of stomach, have irritable

bowel syndrome, or are simply paranoid, DO NOT READ FURTHER! Otherwise,

read at your own risk.***

One fine sunny day, Police Chief R. Runner called up the forensics department at Acme-Looney

University. There had been 166 murders in the past 7 days, approximately one murder every

hour, of many of the local Human workers, shop keepers, and residents of Toon Town. These

alarming rates threatened to destroy the fragile balance of Toon and Human camaraderie that

had developed in Toon Town.

Professor Twee T. Bird, a world-renowned forensics specialist and a Czechoslovakian na-

tive, received the call. “Professor, we need your expertise in this field to identify the pattern

of the killer or killers,” Chief Runner exclaimed. “We need to establish a link between these

people to stop this massacre.”
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“Yes, Chief Runner, please give me the details of the case,” Professor Bird declared with a

heavy native accent, (though, for the sake of the case file, reader, I have decided to leave out the

accent due to the fact that it would obviously drive you – if you will forgive the pun – looney!)

“All prints are wiped clean and there are no identifiable marks on the bodies of the victims.

All we are able to come up with is the possibility that perhaps there is some kind of alternative

method of which we are unaware. We have sent a secure e-mail with a listing of all of the

victims’ races, genders, locations of the bodies, and the sequential order in which they were

killed. We have also included other information that might be helpful,” said Chief Runner.

“Thank you very much. Perhaps I will contact my colleague in the Statistics Department

here, Dr. Elmer Fudd-Einstein,” exclaimed Professor Bird. “He might be able to identify a

pattern of attack with mathematics and statistics.”

“Good luck trying to find him, Professor. Last I heard, he had a bottle of scotch and was in

the Hundred Acre Woods hunting rabbits,” Chief Runner declared in a manner that questioned

the beloved doctor’s credibility.

“Perhaps I will take a drive to find him. The fresh air will do me good.”

***I will skip ahead, dear reader, for much occurred during this time. Needless

to say, after a fierce battle with a mountain cat that the Toon-ology Department

tagged earlier in the year as “Sylvester,” Professor Bird found Dr. Fudd-Einstein

and brought him back, with much bribery of alcohol and the promise of the future

slaying of those “wascally wabbits” (it would help to explain that Dr. Fudd-Einstein

had a speech impediment which was only worsened during the consumption of

alcohol.)***

Once our two heroes returned to the beautiful Acme-Looney University, and once Dr. Fudd-

Einstein became sober and coherent, they set off to examine the case and begin solving these

mysterious murders.

“First off,” Dr. Fudd-Einstein explained, “these people all worked at the University at some

point or another. Also, there also seems to be a trend in the fact that they all had a salary

between $12 and $21 when they retired.”

“That’s not really a lot to live off of,” explained Professor Bird.

“Yes, but you forget that the Looney Currency System works differently than the rest of

the American Currency System. One Looney is equivalent to Ten American Dollars. Also,

these faculty members are the ones who faced a cut in their salary, as denoted by ‘reduction’.

Some of them dropped quite substantially when the University had to fix that little faux pas in

the Chemistry Department. You remember: when Dr. D. Duck tried to create that ‘Everlasting

Elixir?’ As a result, these faculty left the university. Speaking of which, when is his memorial

service?” inquired Dr. Fudd-Einstein.

“This coming Monday. But if there were all of these killings, how in the world could one

person do it? It just doesn’t seem to be possible; stay up 7 days straight and be able to kill all of

these people and have the energy to continue on,” Professor Bird exclaimed, doubting the guilt

of only one person.

“Perhaps then, it was a group of people, perhaps there was more than one killer placed

throughout Toon Town to commit these crimes. If I feed in these variables, along with any oth-

ers that might have a pattern, the Acme Computer will give us an accurate reading of suspects,

with a scant probability of error. As you know, the Acme Computer was developed entirely

in house here at Acme-Looney University,” Dr. Fudd-Einstein said as he began feeding the

numbers into the massive server.

“Hey, look at this,” Professor Bird exclaimed, “What’s with this before/after information?”
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“Scroll down; it shows it as a note from the coroner’s office. Apparently Toon TownCoroner

Marvin – that strange fellow from Mars, Pennsylvania – feels, in his opinion, that given the fact

that the cadavers were either smokers or non-smokers, and given their personal health, and

family medical history, that this was their life expectancy before contact with cigarettes or

second-hand smoke and after,” Dr. Fudd-Einstein declared matter-of-factly.

“Well, would race or gender have something to do with it, Elmer?” inquired Professor Bird.

“Maybe, but I would bet my money on somebody was trying to quiet these faculty before

they made a big ruckus about the secret money-laundering of Old Man Acme. You know, most

people think that is how the University receives most of its funds, through the mob families

out of Chicago. And I would be willing to bet that these faculty figured out the connection and

were ready to tell the Looney Police.” Dr. Fudd-Einstein spoke lower, fearing that somebody

would overhear their conversation.

Dr. Fudd-Einstein then pressed Enter on the keyboard and waited for the results. The

massive computer roared to life. . . and when I say roared, I mean it literally roared. All the

hidden bells, whistles, and alarm clocks in its secret compartments came out and created such

a loud racket that classes across the university had to come to a stand-still until it finished

computing.

Once it was completed, the computer listed 4 names:

***********************SUSPECTS********************************

Yosemite Sam (“Looney” Insane Asylum)

Wile E. Coyote (deceased)

Foghorn Leghorn (whereabouts unknown)

Granny (1313 Mockingbird Lane, Toon Town USA)

Dr. Fudd-Einstein and Professor Bird looked on in silence. They could not believe their eyes.

The greatest computer on the Gulf of Mexico seaboard just released the most obscure results

imaginable.

“There seems to be a mistake. Perhaps something is off,” Professor Bird asked, still unable

to believe the results.

“Not possible; the Acme Computer takes into account every kind of connection available.

It considers affiliations to groups, and affiliations those groups have to other groups. It checks

the FBI, CIA, British intelligence, NAACP, AARP, NSA, JAG, TWA, EPA, FDA, USWA, R,

MAPLE, SPSS, SAS, and Ben & Jerry’s files to identify possible links, creating the most pow-

erful computer in the world. . . with a tweak of Toon fanaticism,” Dr. Fudd-Einstein proclaimed,

being a proud co-founder of the Acme Computer Technology.

“Wait a minute, Ben & Jerry? What would eating ice cream have to do with anything?”

Professor Bird inquired.

“It is in the works now, but a few of my fellow statistician colleagues are trying to find a

mathematical model to link the type of ice cream consumed to the type of person they might

become. Assassins always ate vanilla with chocolate sprinkles, a little known fact they would

tell you about Oswald and Booth,” Dr. Fudd-Einstein declared.

“I’ve heard about this. My forensics graduate students are trying to identify car thieves

with either rocky road or mint chocolate chip. . . so far, the pattern is showing a clear trend

with chocolate chip,” Professor Bird declared.

“Well, what do we know about these suspects, Twee?” Dr. Fudd-Einstein asked.

“Yosemite Sam was locked up after trying to rob that bank in theWest Borough. Apparently

his guns were switched and he was sent the Acme Kids Joke Gun and they blew up in his face.
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The containers of peroxide they contained turned all of his facial hair red. Some little child is

running around Toon Town with a pair of .38’s to this day.

“Wile E. Coyote was that psychopath working for the Yahtzee - the fanatics who believed

that Toons were superior to Humans. He strapped sticks of Acme Dynamite to his chest to be

a martyr for the cause, but before he got to the middle of Toon Town, this defective TNT blew

him up. Not a single other person – Toon or Human – was even close.

“Foghorn Leghorn is the most infamous Dog Kidnapper of all times. He goes to the homes

of prominent Dog citizens and holds one of their relatives for ransom. If they refuse to pay,

he sends them to the pound. Either way, they’re sure stuck in the dog house,” Professor Bird

laughed. Dr. Fudd-Einstein didn’t seem amused, so Professor Bird continued.

“Granny is the most beloved alumnus of Acme-Looney University. She was in the first

graduating class and gives graciously each year to the university. Without her continued fi-

nancial support, we wouldn’t have the jobs we do. She worked as a parking attendant at the

University lots. . . wait a minute, take a look at this,” Professor Bird said as he scrolled down

in the police information. “Granny’s signature is on each of these faculty members’ parking

tickets. Kind of odd, considering the Chief-of-Parking signed each personally. The deceased

had from as few as 1 ticket to as many as 18. All tickets were unpaid.

“And look at this, Granny married Old Man Acme after graduation. He was a resident

of Chicago and rumored to be a consigliere to one of the most prominent crime families in

Chicago, the Chuck Jones/Warner Crime Family,” Professor Bird read from the screen as a

cold feeling of terror rose from the pit of his stomach.

“Say, don’t you live at her house? Wow, you’re living under the same roof as one of the

greatest criminals/murderers of all time!” Dr. Fudd-Einstein said in awe and sarcasm.

“I would never have suspected her, but I guess it makes sense. She is older, so she doesn’t

need near the amount of sleep as a younger person. She has access to all of the vehicles so she

can copy license plate numbers and follow them to their houses. She has the finances to pay for

this kind of massive campaign on behalf of the Mob, and she hates anyone that even remotely

smells like smoke,” Professor Bird explained, wishing to have his hit of nicotine at this time.

“Well, I guess there is nothing left to do but to call Police Chief Runner and have him arrest

her,” Dr. Fudd-Einstein explained as he began dialing. “What I can’t understand is how in the

world the Police Chief sent me all of this information and somehow seemed to screw it up.”

“What do you mean?” inquired Professor Bird.

“Well, look here. The data file from the Chief’s email shows 168 murders, but there have

only been 166. This doesn’t make any sense. I’ll have to straighten it out. Hey, wait a minute.

Look at this, Person #167 and Person #168 seem to match our stats. But how can that be?”

It was at this moment that our two heroes were shot from behind and fell over the computer,

dead. The killer hit Delete on the computer and walked out slowly (considering they had

arthritis) and cackling loudly in the now quiet computer lab.

And so, I guess my question to you the reader is, did Granny murder 168 people, or did

the murderer slip through the cracks of justice? You be the statistician and come to your own

conclusion.

Detective Pyork E. Pig

***End File***



Bibliography

[1] Daniel Adler and Duncan Murdoch. rgl: 3D visualization device sys-

tem (OpenGL), 2009. R package version 0.87. Available from:

http://CRAN.R-project.org/package=rgl. 5

[2] A. Agresti and B. A. Coull. Approximate is better than "exact" for interval estimation of

binomial proportions. The American Statistician, 52:119–126, 1998.

[3] Alan Agresti. Categorical Data Analysis. Wiley, 2002. 211

[4] Tom M. Apostol. Calculus, volume II. Wiley, second edition, 1967. 339

[5] Tom M. Apostol. Calculus, volume I. Wiley, second edition, 1967. 339

[6] Robert B. Ash and Catherine Doleans-Dade. Probability & Measure Theory. Harcourt

Academic Press, 2000. 339

[7] Peter J. Bickel and Kjell A. Doksum. Mathematical Statistics, volume I. Prentice Hall,

2001. 221

[8] Patrick Billingsley. Probability and Measure. Wiley Interscience, 1995. 118, 339

[9] Ben Bolker. emdbook: Ecological models and data (book support), 2009. R package

version 1.2. Available from: http://CRAN.R-project.org/package=emdbook. 172

[10] Bruce L. Bowerman, Richard O’Connell, and Anne Koehler. Forecasting, Time Series,

and Regression: An Applied Approach. South-Western College Pub, 2004.

[11] P. J. Brockwell and R. A. Davis. Time Series and Forecasting Methods. Springer, second

edition, 1991. 26

[12] Neal L. Carothers. Real Analysis. Cambridge University Press, 2000. 339

[13] George Casella and Roger L. Berger. Statistical Inference. Duxbury Press, 2002. vii, 168,

183, 198

[14] Scott Chasalow. combinat: combinatorics utilities, 2009. R package version 0.0-7. Avail-

able from: http://CRAN.R-project.org/package=combinat. 66

[15] Erhan Cinlar. Introduction to Stochastic Processes. Prentice Hall, 1975.

[16] William S. Cleveland. The Elements of Graphing Data. Hobart Press, 1994.

[17] Fortran code by Alan Genz and R code by Adelchi Azzalini. mnormt: The multi-

variate normal and t distributions, 2009. R package version 1.3-3. Available from:

http://CRAN.R-project.org/package=mnormt. 172

363

http://CRAN.R-project.org/package=rgl
http://CRAN.R-project.org/package=emdbook
http://CRAN.R-project.org/package=combinat
http://CRAN.R-project.org/package=mnormt


364 BIBLIOGRAPHY

[18] R core members, Saikat DebRoy, Roger Bivand, and others: see COPYRIGHTS

file in the sources. foreign: Read Data Stored by Minitab, S, SAS, SPSS,

Stata, Systat, dBase, ..., 2010. R package version 0.8-39. Available from:

http://CRAN.R-project.org/package=foreign. 6

[19] Peter Dalgaard. Introductory Statistics with R. Springer, 2008. Available from:

http://staff.pubhealth.ku.dk/~pd/ISwR.html. viii

[20] A. C. Davison and D. V. Hinkley. Bootstrap Methods and Their Applications. Cambridge

University Press, 1997.

[21] Thomas J. DiCiccio and Bradley Efron. Bootstrap confidence intervals. Statistical Sci-

ence, 11:189–228, 1996.

[22] Evgenia Dimitriadou, Kurt Hornik, Friedrich Leisch, David Meyer, and An-

dreas Weingessel. e1071: Misc Functions of the Department of Statis-

tics (e1071), TU Wien, 2009. R package version 1.5-22. Available from:

http://CRAN.R-project.org/package=e1071. 40

[23] Richard Durrett. Probability: Theory and Examples. Duxbury Press, 1996.

[24] Rick Durrett. Essentials of Stochastic Processes. Springer, 1999.

[25] Christophe Dutang, Vincent Goulet, and Mathieu Pigeon. actuar: An r package for actu-

arial science. Journal of Statistical Software, 2008. to appear. 154

[26] Brian Everitt. An R and S-Plus Companion to Multivariate Analysis. Springer, 2007.

[27] Gerald B. Folland. Real Analysis: Modern Techniques and Their Applications. Wiley,

1999. 339

[28] John Fox. Applied Regression Analysis, Linear Models, and Related Methods. Sage,

1997. 287

[29] John Fox. An R and S Plus Companion to Applied Regression. Sage, 2002. 294

[30] John Fox. car: Companion to Applied Regression, 2009. R package version 1.2-16.

Available from: http://CRAN.R-project.org/package=car. 288

[31] John Fox, with contributions from Liviu Andronic, Michael Ash, Theophilius Boye,

Stefano Calza, Andy Chang, Philippe Grosjean, Richard Heiberger, G. Jay Kerns, Re-

naud Lancelot, Matthieu Lesnoff, Uwe Ligges, Samir Messad, Martin Maechler, Robert

Muenchen, Duncan Murdoch, Erich Neuwirth, Dan Putler, Brian Ripley, Miroslav Ristic,

and Peter Wolf. Rcmdr: R Commander, 2009. R package version 1.5-4. Available from:

http://CRAN.R-project.org/package=Rcmdr. 269

[32] Michael Friendly. Visualizing Categorical Data. SAS Publishing, 2000.

[33] Andrew Gelman, John B. Carlin, Hal S. Stern, and Donald B. Rubin. Bayesian Data

Analysis. CRC Press, 2004. 167

http://CRAN.R-project.org/package=foreign
http://staff.pubhealth.ku.dk/~pd/ISwR.html
http://CRAN.R-project.org/package=e1071
http://CRAN.R-project.org/package=car
http://CRAN.R-project.org/package=Rcmdr


BIBLIOGRAPHY 365

[34] Alan Genz, Frank Bretz, Tetsuhisa Miwa, Xuefei Mi, Friedrich Leisch, Fabian Scheipl,

and Torsten Hothorn. mvtnorm: Multivariate Normal and t Distributions, 2009. R pack-

age version 0.9-8. Available from: http://CRAN.R-project.org/package=mvtnorm.

172

[35] Rob Goedman, Gabor Grothendieck, Søren Højsgaard, and Ayal Pinkus. Ryacas: R in-

terface to the yacas computer algebra system, 2008. R package version 0.2-9. Available

from: http://ryacas.googlecode.com. 165

[36] Gregor Gorjanc. Using sweave with lyx. R News, 1:2–9, 2008. 356

[37] Charles M. Grinstead and J. Laurie Snell. Introduction to Probability. American Mathe-

matical Society, 1997. Available from: http://www.dartmouth.edu/~chance/. viii

[38] Bettina Grün and Achim Zeileis. Automatic generation of exams in

R. Journal of Statistical Software, 29(10):1–14, 2009. Available from:

http://www.jstatsoft.org/v29/i10/. viii

[39] Frank E Harrell, Jr and with contributions from many other users. Hmisc:

Harrell Miscellaneous, 2009. R package version 3.7-0. Available from:

http://CRAN.R-project.org/package=Hmisc.

[40] Richard M. Heiberger. HH: Statistical Analysis and Data Display:

Heiberger and Holland, 2009. R package version 2.1-32. Available from:

http://CRAN.R-project.org/package=HH. 248

[41] Richard M. Heiberger and Burt Holland. Statistical Analysis and Data Display: An In-

termediate Course with Examples in S-Plus, R, and SAS. Springer, 2004. Available from:

http://astro.temple.edu/~rmh/HH/.

[42] Richard M. Heiberger and Erich Neuwirth. R Through Excel: A Spreadsheet In-

terface for Statistics, Data Analysis, and Graphics. Springer, 2009. Available from:

http://www.springer.com/statistics/computanional+statistics/book/978-1-4419-0051

[43] Robert V. Hogg, Joseph W. McKean, and Allen T. Craig. Introduction to Mathematical

Statistics. Pearson Prentice Hall, 2005. 183

[44] Robert V. Hogg and Elliot A. Tanis. Probability and Statistical Inference. Pearson Pren-

tice Hall, 2006. vii

[45] Torsten Hothorn and Kurt Hornik. exactRankTests: Exact Distributions for Rank and

Permutation Tests, 2006. R package version 0.8-18.

[46] Torsten Hothorn, Kurt Hornik, Mark A. van-de Wiel, and Achim Zeileis. Implementing

a class of permutation tests: The coin package. Journal of Statistical Software, 28:1–23,

2008.

[47] Norman L. Johnson, Samuel Kotz, and N. Balakrishnan. Continuous Univariate Distri-

butions, volume 1. Wiley, second edition, 1994. 137

[48] Norman L. Johnson, Samuel Kotz, and N. Balakrishnan. Continuous Univariate Distri-

butions, volume 2. Wiley, second edition, 1995. 137

http://CRAN.R-project.org/package=mvtnorm
http://ryacas.googlecode.com
http://www.dartmouth.edu/~chance/
http://www.jstatsoft.org/v29/i10/
http://CRAN.R-project.org/package=Hmisc
http://CRAN.R-project.org/package=HH
http://astro.temple.edu/~rmh/HH/
http://www.springer.com/statistics/computanional+statistics/book/978-1-4419-0051-7


366 BIBLIOGRAPHY

[49] Norman L. Johnson, Samuel Kotz, and N. Balakrishnan. Discrete Multivariate Distribu-

tions. Wiley, 1997. 157

[50] Norman L. Johnson, Samuel Kotz, and Adrienne W. Kemp. Univariate Discrete Distri-

butions. Wiley, second edition, 1993. 107

[51] Roger W. Johnson. How many fish are in the pond? Available from:

http://www.rsscse.org.uk/ts/gtb/johnson3.pdf.

[52] G. Jay Kerns. prob: Elementary Probability on Finite Sample Spaces, 2009. R package

version 0.9-2. Available from: http://CRAN.R-project.org/package=prob. 66

[53] G. Jay Kerns, with contributions by Theophilius Boye, Tyler Drombosky, and

adapted from the work of John Fox et al. RcmdrPlugin.IPSUR: An IPSUR Plu-

gin for the R Commander, 2009. R package version 0.1-6. Available from:

http://CRAN.R-project.org/package=RcmdrPlugin.IPSUR.

[54] Samuel Kotz, N. Balakrishnan, and Norman L. Johnson. Continuous Multivariate Distri-

butions, volume 1: Models and Applications. Wiley, second edition, 2000. 157, 170

[55] Max Kuhn and Steve Weaston. odfWeave: Sweave processing of Open Document Format

(ODF) files, 2009. R package version 0.7.10. 351

[56] Michael Lavine. Introduction to Statistical Thought. Lavine, Michael, 2009. Available

from: http://www.math.umass.edu/~lavine/Book/book.html. viii

[57] Peter M. Lee. Bayesian Statistics: An Introduction. Wiley, 1997. 167

[58] E. L. Lehmann. Testing Statistical Hypotheses. Springer-Verlag, 1986. vii

[59] E. L. Lehmann and George Casella. Theory of Point Estimation. Springer, 1998. vii

[60] Uwe Ligges. Accessing the sources. R News, 6:43–45, 2006. 12, 13

[61] Uwe Ligges and Martin Mächler. Scatterplot3d - an r package for visualizing mul-

tivariate data. Journal of Statistical Software, 8(11):1–20, 2003. Available from:

http://www.jstatsoft.org. 179

[62] Jan R. Magnus and Heinz Neudecker. Matrix Differential Calculus with Applications in

Statistics and Econometrics. Wiley, 1999. 339

[63] John Maindonald and John Braun. Data Analysis and Graphics Using R. Cambridge

University Press, 2003.

[64] John Maindonald and W. John Braun. DAAG: Data Analysis And Graph-

ics data and functions, 2009. R package version 1.01. Available from:

http://CRAN.R-project.org/package=DAAG.

[65] Ben Mezrich. Bringing Down the House: The Inside Story of Six M.I.T. Students Who

Took Vegas for Millions. Free Press, 2003. 77

[66] Jeff Miller. Earliest known uses of some of the words of mathematics. Available from:

http://jeff560.tripod.com/mathword.html. 23

http://www.rsscse.org.uk/ts/gtb/johnson3.pdf
http://CRAN.R-project.org/package=prob
http://CRAN.R-project.org/package=RcmdrPlugin.IPSUR
http://www.math.umass.edu/~lavine/Book/book.html
http://www.jstatsoft.org
http://CRAN.R-project.org/package=DAAG
http://jeff560.tripod.com/mathword.html


BIBLIOGRAPHY 367

[67] John Neter, Michael H. Kutner, Christopher J. Nachtsheim, and WilliamWasserman. Ap-

plied Linear Regression Models. McGraw Hill, third edition, 1996. 209, 267, 287, 294

[68] R Development Core Team. R: A Language and Environment for Statistical Computing.

R Foundation for Statistical Computing, Vienna, Austria, 2009. ISBN 3-900051-07-0.

Available from: http://www.R-project.org. 334

[69] C. Radhakrishna Rao and Helge Toutenburg. Linear Models: Least Squares and Alterna-

tives. Springer, 1999. 267, 271

[70] Sidney I. Resnick. A Probability Path. Birkhauser, 1999. 168, 339

[71] Maria L. Rizzo. Statistical Computing with R. Chapman & Hall/CRC, 2008. 297

[72] Christian P. Robert and George Casella. Monte Carlo Statistical Methods. Springer, 2004.

297

[73] Kenneth A. Ross. Elementary Calculus: The Theory of Calculus. Springer, 1980.

[74] P. Ruckdeschel, M. Kohl, T. Stabla, and F. Camphausen. S4 classes

for distributions. R News, 6(2):2–6, May 2006. Available from:

http://www.uni-bayreuth.de/departments/math/org/mathe7/DISTR/distr.pdf.

110, 114, 142, 186, 201

[75] Deepayan Sarkar. lattice: Lattice Graphics, 2009. R package version 0.17-26. Available

from: http://CRAN.R-project.org/package=lattice. 268

[76] F. E. Satterthwaite. An approximate distribution of estimates of variance components.

Biometrics Bulletin, 2:110–114, 1946. 209

[77] Luca Scrucca. qcc: an r package for quality control charting and sta-

tistical process control. R News, 4/1:11–17, 2004. Available from:

http://CRAN.R-project.org/doc/Rnews/. 30

[78] Robert J. Serfling. Approximation Theorems of Mathematical Statistics. Wiley, 1980.

[79] Greg Snow. TeachingDemos: Demonstrations for teaching and

learning, 2009. R package version 2.5. Available from:

http://CRAN.R-project.org/package=TeachingDemos. 186

[80] James Stewart. Calculus. Thomson Brooks/Cole, 2008. 339

[81] Stephen M. Stigler. The History of Statistics: The Measurement of Uncertainty before

1900. Harvard University Press, 1986.

[82] Gilbert Strang. Linear Algebra and Its Applications. Harcourt, 1988. 339

[83] Barbara G. Tabachnick and Linda S. Fidell. Using Multivariate Statistics. Allyn and

Bacon, 2006. 39, 40, 294

[84] W. N. Venables and B. D. Ripley. Modern Applied Statistics with S. Springer,

New York, fourth edition, 2002. ISBN 0-387-95457-0. Available from:

http://www.stats.ox.ac.uk/pub/MASS4. 212

http://www.R-project.org
http://www.uni-bayreuth.de/departments/math/org/mathe7/DISTR/distr.pdf
http://CRAN.R-project.org/package=lattice
http://CRAN.R-project.org/doc/Rnews/
http://CRAN.R-project.org/package=TeachingDemos
http://www.stats.ox.ac.uk/pub/MASS4


368 BIBLIOGRAPHY

[85] William N. Venables and David M. Smith. An Introduction to R, 2010. Available from:

http://www.r-project.org/Manuals. 10, 13, 334

[86] John Verzani. UsingR: Data sets for the text "Using R for Introductory Statistics". R

package version 0.1-12. Available from: http://www.math.csi.cuny.edu/UsingR.

21

[87] John Verzani. Using R for Introductory Statistics. CRC Press, 2005. Available from:

http://www.math.csi.cuny.edu/UsingR/. viii

[88] B. L. Welch. The generalization of "student’s" problem when several different population

variances are involved. Biometrika, 34:28–35, 1947. 209

[89] Hadley Wickham. Reshaping data with the reshape package. Journal of Statistical Soft-

ware, 21(12), 2007. Available from: http://www.jstatsoft.org/v21/i12/paper.

332

[90] Hadley Wickham. ggplot2: elegant graphics for data analysis. Springer New York, 2009.

Available from: http://had.co.nz/ggplot2/book. viii

[91] Graham Williams. rattle: A graphical user interface for data min-

ing in R using GTK, 2009. R package version 2.5.12. Available from:

http://CRAN.R-project.org/package=rattle. 8

[92] Peter Wolf and Uni Bielefeld. aplpack: Another Plot PACKage: stem.leaf, bagplot, faces,

spin3R, and some slider functions, 2009. R package version 1.2.2. Available from:

http://CRAN.R-project.org/package=aplpack. 25

[93] Achim Zeileis and Torsten Hothorn. Diagnostic checking in regression relationships. R

News, 2(3):7–10, 2002. Available from: http://CRAN.R-project.org/doc/Rnews/.

256

http://www.r-project.org/Manuals
http://www.math.csi.cuny.edu/UsingR
http://www.math.csi.cuny.edu/UsingR/
http://www.jstatsoft.org/v21/i12/paper
http://had.co.nz/ggplot2/book
http://CRAN.R-project.org/package=rattle
http://CRAN.R-project.org/package=aplpack
http://CRAN.R-project.org/doc/Rnews/


Index

#, 9

.Internal, 13

.Primitive, 13

.RData, 16

.Rprofile, 16

?, 14

??, 14

[], 11

Active data set, 28

apropos, 14

as.complex, 10

barplot, 29

boot, 301

boot.ci, 303

c, 10

cex.names, 29

complex, 10

confint, 275

CRAN, 15

Data sets

cars, 236

discoveries, 21

LakeHuron, 26

precip, 20, 23

rivers, 20, 301

state.abb, 26

state.division, 30

state.name, 26

state.region, 28

trees, 268

UKDriverDeaths, 25

Deducer, 8

depths, 25

digits, 9

dot plot, see{strip chart}21

DOTplot, 21

double, 10

dump, 15

ecdf, 121

Emacs, 7

Empirical distribution, 120

ESS, 7

event, 70

example, 14

exp, 9

fitted values, 272

hat matrix, 272

help, 14

help.search, 14

help.start, 14

hist, 23

Histogram, 23

history, 16

install.packages, 6

intersect, 12

JGR, 7

LETTERS, 11

letters, 11

library, 6

likelihood function, 239, 270

lm, 271

ls, 16

maximum likelihood, 239, 270

model

multiple linear regression, 268

model matrix, 267

model.matrix, 271

mutually exclusive, 70

NA, 10

names, 20

NaN, 10

nominal data, 26

normal equations, 271

objects, 16

369



370 INDEX

options, 9

ordinal data, 26

par, 29

pareto.chart, 30

pie, 30

plot, 25

Poisson process, 129

Poor Man’s GUI, 8

power.examp, 231

predict, 247

prop.table, 28

R Commander, 8

R Editor, 7

R Graph Gallery, 16

R Graphical Manual, 16

R packages

UsingR, 21

R packages

aplpack, 25

distr, 141

qcc, 30

RcmdrPlugin.IPSUR, 30

R-Forge, 16

R-Wiki, 16

Rattle, 8

regression assumptions, 236

regression line, 236

remove, 16

replicate, 231

response vector, 267

rev, 12

Rprofile.site, 16

RSiteSearch, 15

RWinEdt, 7

sample, 122

sample space, 65

scan, 11

Sciviews-K, 7

seq, 11

sessionInfo, 15

sigma.test, 227

sqrt, 9

stem.leaf, 25

str, 20, 28

strip chart, 21

stripchart, 21

t.test, 225

The R-Project, 15

Tinn-R, 7

typeof, 10

urnsamples, 68

UseMethod, 12

wilcox.test, 13

z.test, 225


	Contents
	Preface
	List of Figures
	List of Tables
	1 An Introduction to Probability and Statistics
	1.1 Probability
	1.2 Statistics
	Chapter Exercises

	2 An Introduction to R
	2.1 Downloading and Installing R
	2.2 Communicating with R
	2.3 Basic R Operations and Concepts
	2.4 Getting Help
	2.5 External Resources
	2.6 Other Tips
	Chapter Exercises

	3 Data Description 
	3.1 Types of Data
	3.2 Features of Data Distributions
	3.3 Descriptive Statistics
	3.4 Exploratory Data Analysis
	3.5 Multivariate Data and Data Frames
	3.6 Comparing Populations
	Chapter Exercises

	4 Probability
	4.1 Sample Spaces
	4.2 Events
	4.3 Model Assignment
	4.4 Properties of Probability
	4.5 Counting Methods
	4.6 Conditional Probability
	4.7 Independent Events
	4.8 Bayes' Rule
	4.9 Random Variables
	Chapter Exercises

	5 Discrete Distributions
	5.1 Discrete Random Variables
	5.2 The Discrete Uniform Distribution
	5.3 The Binomial Distribution
	5.4 Expectation and Moment Generating Functions
	5.5 The Empirical Distribution
	5.6 Other Discrete Distributions
	5.7 Functions of Discrete Random Variables
	Chapter Exercises

	6 Continuous Distributions
	6.1 Continuous Random Variables
	6.2 The Continuous Uniform Distribution
	6.3 The Normal Distribution
	6.4 Functions of Continuous Random Variables
	6.5 Other Continuous Distributions
	Chapter Exercises

	7 Multivariate Distributions
	7.1 Joint and Marginal Probability Distributions
	7.2 Joint and Marginal Expectation
	7.3 Conditional Distributions
	7.4 Independent Random Variables
	7.5 Exchangeable Random Variables
	7.6 The Bivariate Normal Distribution
	7.7 Bivariate Transformations of Random Variables
	7.8 Remarks for the Multivariate Case
	7.9 The Multinomial Distribution
	Chapter Exercises

	8 Sampling Distributions
	8.1 Simple Random Samples
	8.2 Sampling from a Normal Distribution
	8.3 The Central Limit Theorem
	8.4 Sampling Distributions of Two-Sample Statistics
	8.5 Simulated Sampling Distributions
	Chapter Exercises

	9 Estimation
	9.1 Point Estimation
	9.2 Confidence Intervals for Means
	9.3 Confidence Intervals for Differences of Means
	9.4 Confidence Intervals for Proportions
	9.5 Confidence Intervals for Variances
	9.6 Fitting Distributions
	9.7 Sample Size and Margin of Error
	9.8 Other Topics
	Chapter Exercises

	10 Hypothesis Testing
	10.1 Introduction
	10.2 Tests for Proportions
	10.3 One Sample Tests for Means and Variances
	10.4 Two-Sample Tests for Means and Variances
	10.5 Other Hypothesis Tests
	10.6 Analysis of Variance
	10.7 Sample Size and Power
	Chapter Exercises

	11 Simple Linear Regression
	11.1 Basic Philosophy
	11.2 Estimation
	11.3 Model Utility and Inference
	11.4 Residual Analysis
	11.5 Other Diagnostic Tools
	Chapter Exercises

	12 Multiple Linear Regression
	12.1 The Multiple Linear Regression Model
	12.2 Estimation and Prediction
	12.3 Model Utility and Inference
	12.4 Polynomial Regression
	12.5 Interaction
	12.6 Qualitative Explanatory Variables
	12.7 Partial F Statistic
	12.8 Residual Analysis and Diagnostic Tools
	12.9 Additional Topics
	Chapter Exercises

	13 Resampling Methods
	13.1 Introduction
	13.2 Bootstrap Standard Errors
	13.3 Bootstrap Confidence Intervals
	13.4 Resampling in Hypothesis Tests
	Chapter Exercises

	14 Categorical Data Analysis
	15 Nonparametric Statistics
	16 Time Series
	A R Session Information
	B GNU Free Documentation License
	C History
	D Data
	D.1 Data Structures
	D.2 Importing Data
	D.3 Creating New Data Sets
	D.4 Editing Data
	D.5 Exporting Data
	D.6 Reshaping Data

	E Mathematical Machinery
	E.1 Set Algebra
	E.2 Differential and Integral Calculus
	E.3 Sequences and Series
	E.4 The Gamma Function
	E.5 Linear Algebra
	E.6 Multivariable Calculus

	F Writing Reports with R
	F.1 What to Write
	F.2 How to Write It with R
	F.3 Formatting Tables
	F.4 Other Formats

	G Instructions for Instructors
	G.1 Generating This Document
	G.2 How to Use This Document
	G.3 Ancillary Materials
	G.4 Modifying This Document

	H RcmdrTestDrive Story
	Bibliography
	Index

